

Direct and Partial Variation

Lesson 12

Lesson Twelve Concepts

Overall Expectations

- Apply data-management techniques to investigate relationships between two variables;
- Determine the characteristics of linear relations;
- Demonstrate an understanding of the constant rate of change and its connection to linear relations;
- Connect various representations of a linear relation, and solve problems using the representations.

Specific Expectations

- Construct tables of values and graphs, using a variety of tools;
- Construct tables of values, scatter plots, and lines or curves of best fit as appropriate using a variety of tools;
- Identify through investigation, some properties of linear relations;
- Determine other representations of a linear relation arising from a realistic situation, given one representation;
- Determine values of a linear relation by using a table of values, by using the equation of the relation, and by interpolating or extrapolating from the graph of the relation;
- Express a linear relation as an equation in two variables, using the rate of change and the initial value;
- Describe the effects on a linear graph and make the corresponding changes to the linear equation when the conditions of the situation they represent are varied;
- Determine graphically the point of intersection of two linear relations, and interpret the intersection point in the context of an application.

Direct and Partial Variation

Direct Variation

Direct Variation is a relation that is of the form $y = mx$.

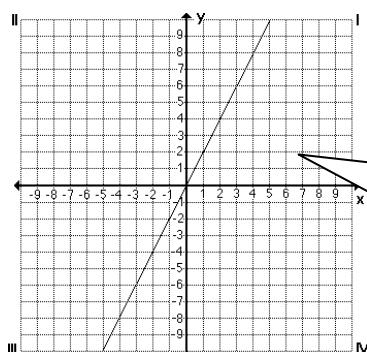
The graph of $y = mx$ is a straight line with the slope of m .

The line $y = mx$ always passes through the order pair $(0, 0)$. $(0, 0)$ is called the origin.

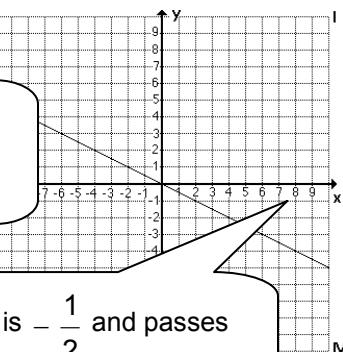
The relation $y = mx$ represents direct variation because there is a direct relationship.

Example

Graph each equation which models direct variation.


a) $y = 2x$

b) $y = -\frac{1}{2}x$


Solution

a) $y = 2x$

b) $y = -\frac{1}{2}x$

Slope is 2 and passes through the origin.

Slope is $-\frac{1}{2}$ and passes through the origin.

Support Questions

1. State the value of m in each equation of the form $y = mx$.

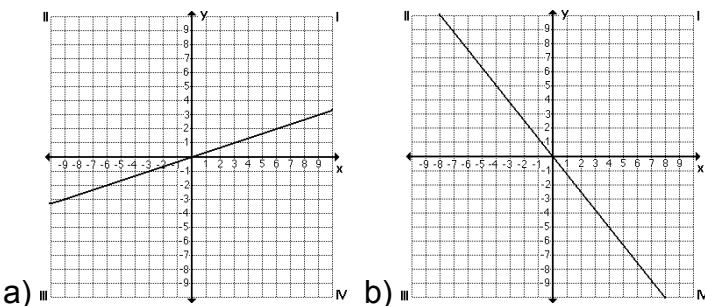
a) $y = -4x$

b) $y = x$

c) $y = -\frac{1}{3}x$

d) $y = \frac{2}{5}x$

2. Write an equation of the line through the origin with each slope.


a) $m = -5$

b) $m = -\frac{3}{7}$

c) $m = \frac{1}{4}$

d) $m = 1$

3. Find the slope of each line, and then write its equation.

4. Graph each line.

a) $y = -\frac{1}{5}x$ b) $y = \frac{2}{3}x$

5. Johnny earns \$6 for every hour worked. Write an equation for this statement, then create a table of values and graph.

Partial Variation

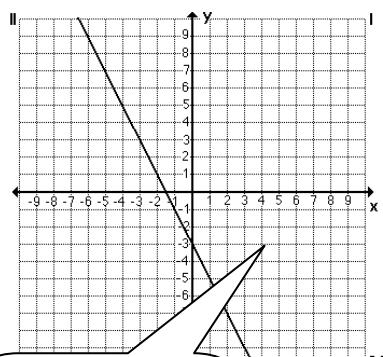
Partial Variation is a relation that is of the form $y = mx+b$.

The graph of $y = mx+b$ is a straight line with the slope of m and a y -intercept of b .

The line $y = mx+b$ does not pass through the origin.

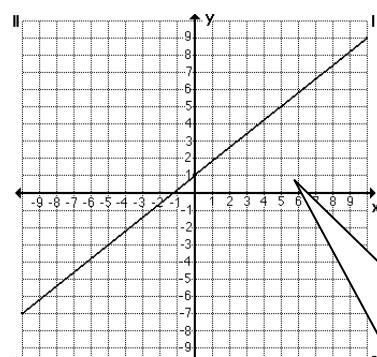
The relation $y = mx + b$ represents partial variation because the value of y varies partially with the value of x .

Example


Graph each equation which models partial variation.

a) $y = -2x - 3$

b) $y = \frac{4}{5}x + 1$


Solution

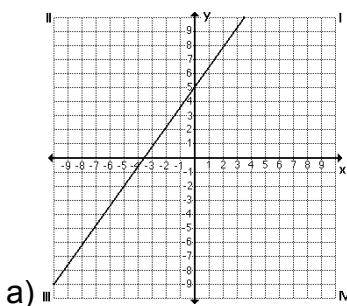
a) $y = -2x - 3$

Slope is -2 and intersects the y -axis at -3 .

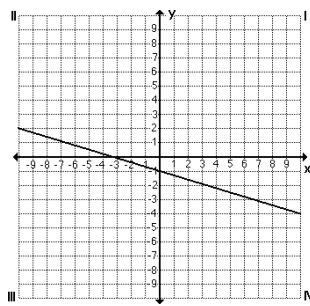
b) $y = \frac{4}{5}x + 1$

Slope is $\frac{4}{5}$ and intersects the y -axis at $+1$.

Support Questions


6. Write an equation of the line with each slope and y -intercept.

a) $m = -5, b = 1$


b) $m = -\frac{3}{7}, b = -4$

c) $m = \frac{1}{4}, b = +6$

7. Find the slope and y -intercept of each line, and then write its equation.

a)

b)

8. Graph each line.

a) $y = -2x + 1$

b) $y = \frac{2}{3}x - 6$

c) $y = x - 4$

9. Noah earns a \$100 a week and \$2 for every hour worked. Write an equation for this statement, then create a table of values and graph.

Key Question #12

1. State the value of m in each equation of the form $y = mx$. (2 marks)

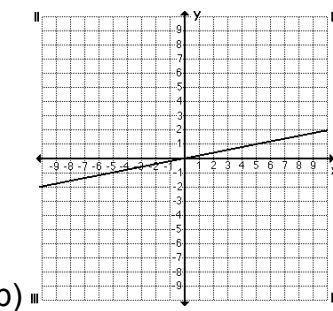
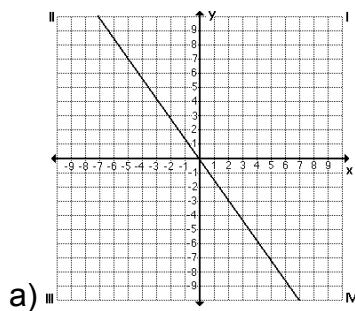
a) $y = 7x$

b) $y = -x$

c) $y = \frac{2}{7}x$

d) $y = -\frac{3}{8}x$

2. Write an equation of the line through the origin with each slope. (2 marks)



a) $m = 7$

b) $m = \frac{1}{2}$

c) $m = -3$

d) $m = -\frac{3}{8}$

3. Find the slope of each line, and then write its equation. (2 marks)

4. Graph each line. (3 marks)

a) $y = -3x$

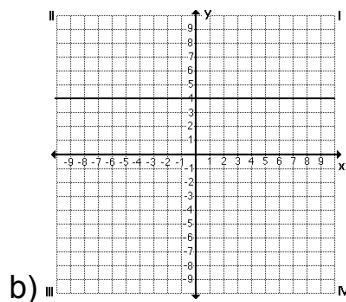
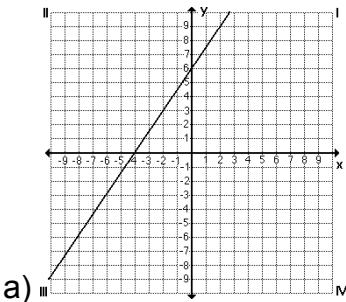
b) $y = \frac{3}{5}x$

c) $y = -x$

5. Brook spends \$4.00 each day for lunch on work days. Write an equation for this statement, then create a table of values and graph. (3 marks)

6. Write an equation of the line with each slope and y -intercept. (3 marks)

a) $m = 3, b = 0$

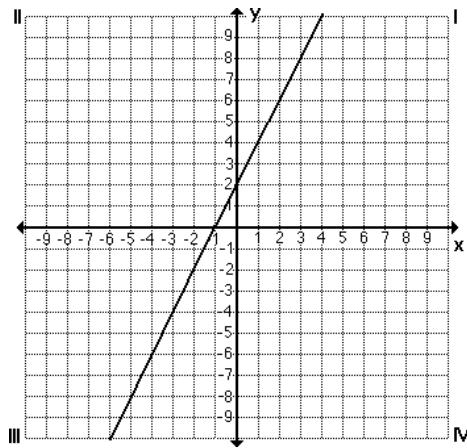


b) $m = -2, b = -3$

c) $m = \frac{3}{4}, b = +7$

Key Question #12

7. Find the slope and y-intercept of each line, and then write its equation. (4 marks)

8. Graph each line. (3 marks)


a) $y = 4x - 2$

b) $y = -\frac{1}{4}x + 1$

c) $y = -x + 3$

9. The length of time to set up is 200 min. The time to make paint each sign is 25 min. Write an equation for this statement, then create a table of values and graph. (3 marks)

10. Stephen graphed the equation $y = 2x - 1$ on a Cartesian plane. When he checked with a classmate, he realized the graph was different. Is Stephen's graph correct? If so, explain how you know. If not, explain what Stephen did wrong. (4 marks)

