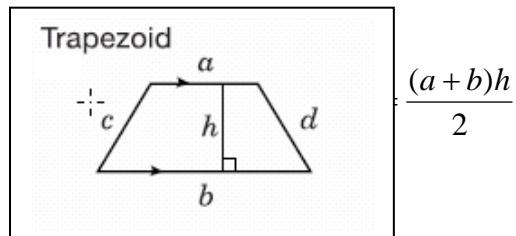
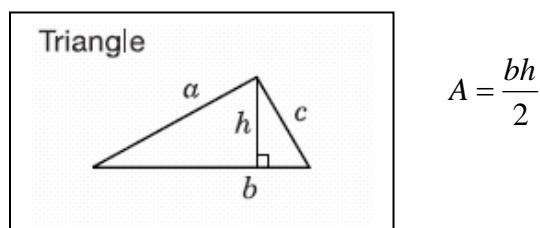
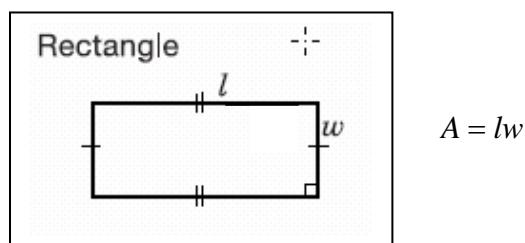


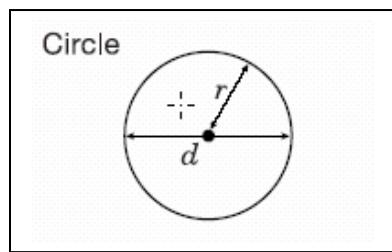
Area

Lesson 16

Lesson Sixteen Concepts

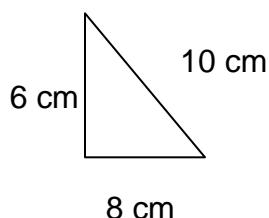

- Introduction to area and surface area
- Radius and diameter
- Calculations using pi (π)
- Solving area and surface area questions using formulas and substitution


Area and Surface Area

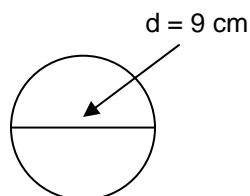
Area

Area is the number of square units needed to cover a region.

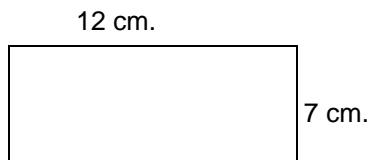
Formulas to be used to calculate area.

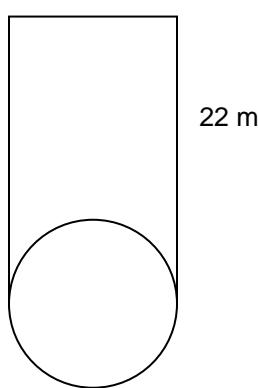


$$A = \pi r^2$$

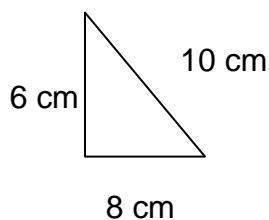

Example

Find the area of each shape.


a)


b)

c)

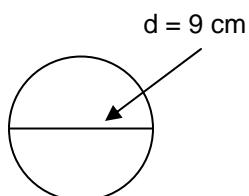


d)

Solution

a)

$$A = \frac{bh}{2}$$


$$A = \frac{(6)(8)}{2}$$

$$A = \frac{48}{2}$$

$$A = 24\text{cm}^2$$

$8\text{cm}^1 \times 6\text{cm}^1 = 48\text{cm}^2$. The cm^2 comes from the multiplying of the cm together.

b)

$$r = \frac{d}{2}$$

$$r = \frac{9}{2}$$

$$r = 4.5$$

$$A = \pi r^2$$

$$A = (3.14)(4.5)^2$$

$$A \approx 63.59\text{cm}^2$$

Remember to use BEDMAS.
Brackets before multiplication.

c)

12 cm.

7 cm.

$$A = lw$$

$$A = (12)(7)$$

$$A = 84\text{cm}^2$$

d)

10 m

22 m

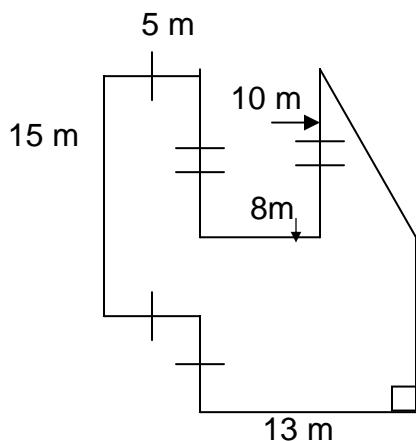
This object should be divided into two easily calculated pieces. The rectangle should be the first (A_1) and $\frac{1}{2}$ of the circle (A_2) should be the other.

Total area = area of rectangle + area of $\frac{1}{2}$ circle.

$$A_t = A_1 + \frac{A_2}{2}$$

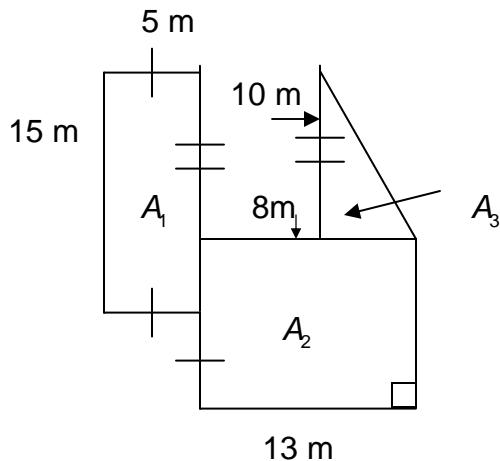
$$A_t = lw + \frac{\pi r^2}{2}$$

$$A_t = (10)(22) + \frac{(3.14)(5)^2}{2}$$


$$A_t = 220 + \frac{78.5}{2}$$

$$A_t = 220 + 39.25$$

$$A_t = 259.25 \text{ m}^2$$


Example

Find the area.

Solution

Find the area.

Need to divide the object into easily calculated shapes.

$$A_t = \text{Total Area}$$

$$A_t = A_1 + A_2 + A_3$$

Area of Rectangle One

$$A_1 = lw$$

$$A_1 = (5)(15)$$

$$A_1 = 75\text{cm}^2$$

Area of Rectangle Two

$$A_2 = lw$$

$$A_2 = (13)(10)$$

$$A_3 = 130\text{cm}^2$$

By deductive reasoning the length of the side of the rectangle is $20-10=10\text{ cm}$.

Area of Triangle

$$A_3 = \frac{bh}{2}$$

$$A_3 = \frac{(5)(10)}{2}$$

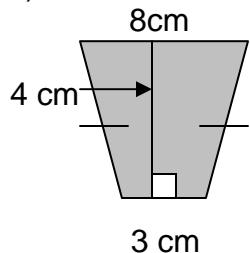
$$A_3 = \frac{50}{2}$$

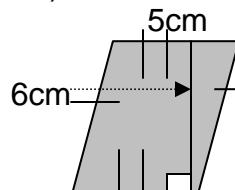
$$A_3 = 25\text{cm}^2$$

Total Area

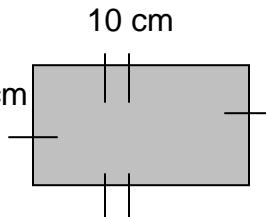
$$A_t = A_1 + A_2 + A_3$$

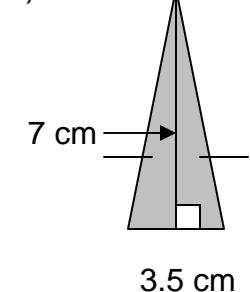
$$A_t = 75 + 130 + 25$$

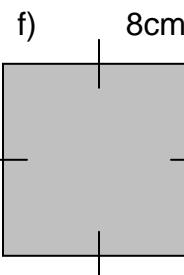
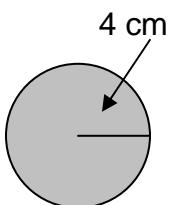

$$A_t = 230\text{cm}^2$$

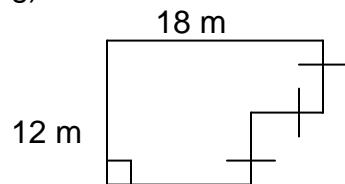

Support Questions

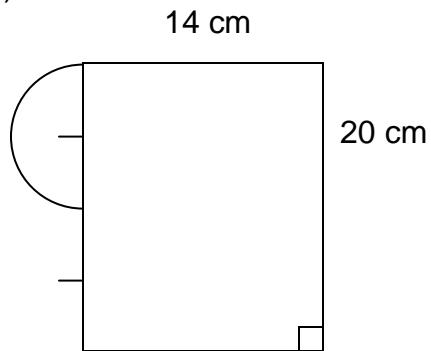
1. Calculate the area for each of the following objects.

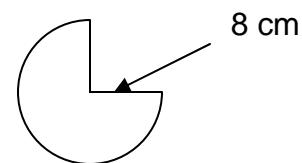

a)


b)



c)

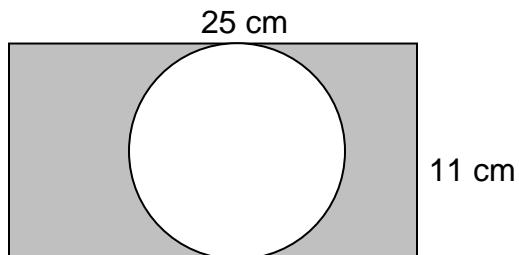

d)

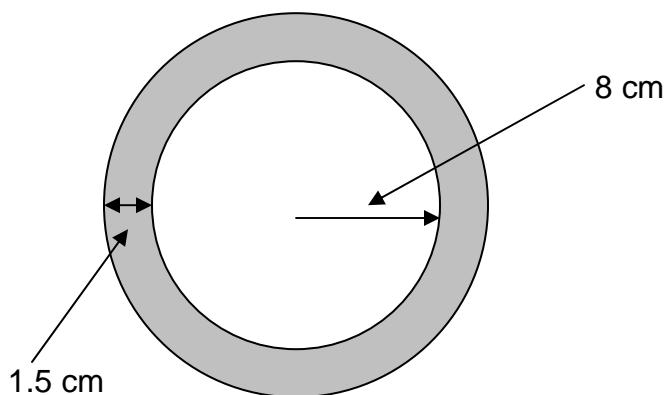

e)


g)

h)

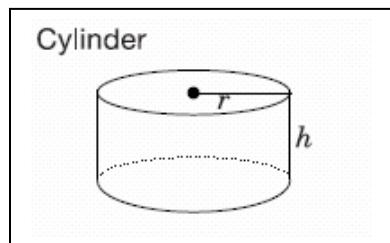
i)

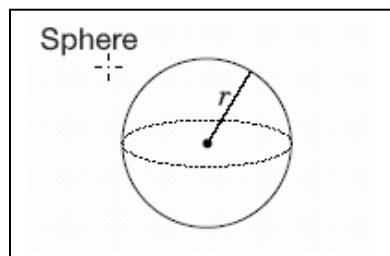



Support Questions

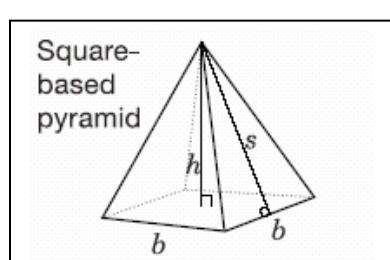
2. Calculate the shaded area for each of the following objects.

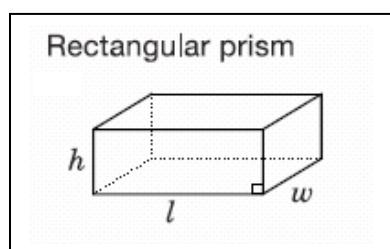
a)

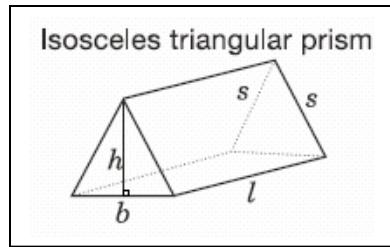

b)

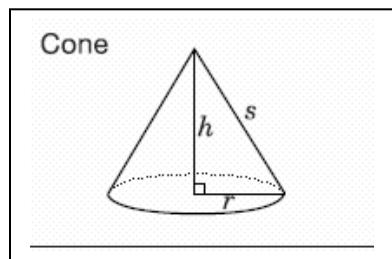

Surface Area

Surface Area is a measure of the area on the surface of a three-dimensional object.


Formulas to be used to calculate surface area.

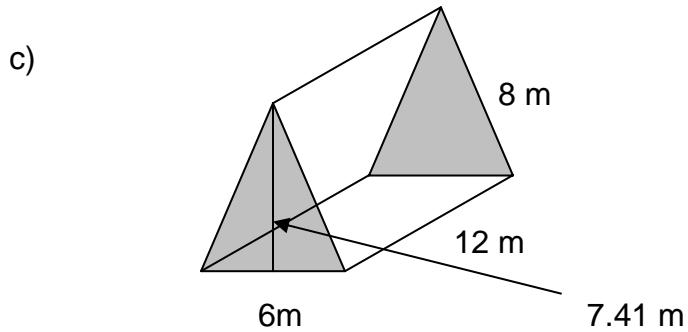
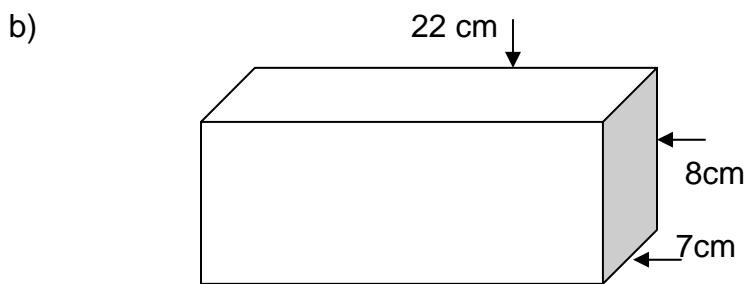
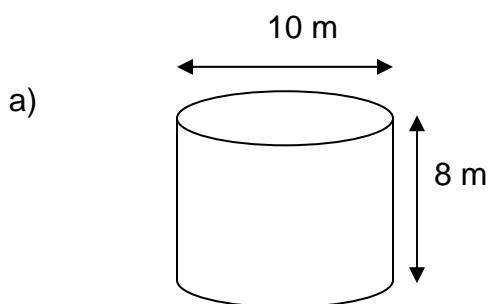

$$\begin{aligned} S.A_{top} &= \pi r^2 \\ S.A_{base} &= \pi r^2 \\ S.A_{side} &= 2\pi r h \\ S.A_{total} &= 2\pi r^2 + 2\pi r h \end{aligned}$$

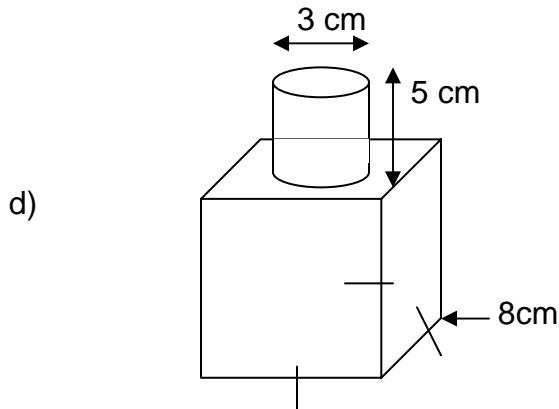

$$S.A. = 4\pi r^2$$


$$\begin{aligned} S.A_{triangle} &= \frac{bs}{2} \\ S.A_{base} &= b^2 \\ S.A_{total} &= 4\left(\frac{bs}{2}\right) + b^2 \\ S.A_{total} &= 2bs + b^2 \end{aligned}$$

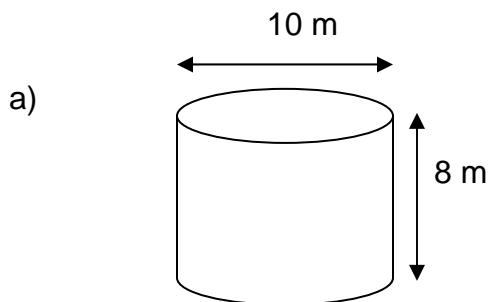
$$S.A. = 2(wh + lw + lh)$$

$$S.A. = 2\left(\frac{bh}{2}\right) + 2ls + lb$$

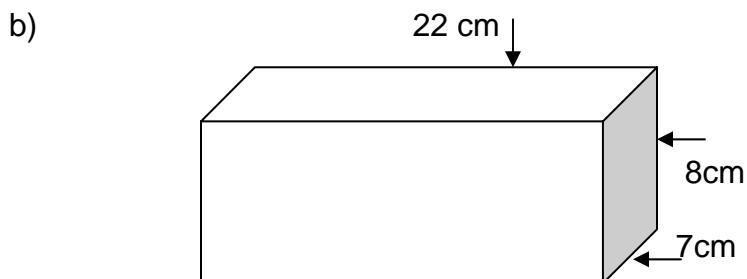



$$S.A_{cone} = \pi r s$$


$$S.A_{base} = \pi r^2$$

$$S.A_{total} = \pi r(s + r)$$


Example

Find the surface area of each figure.


Solution

Find the surface area of each figure.

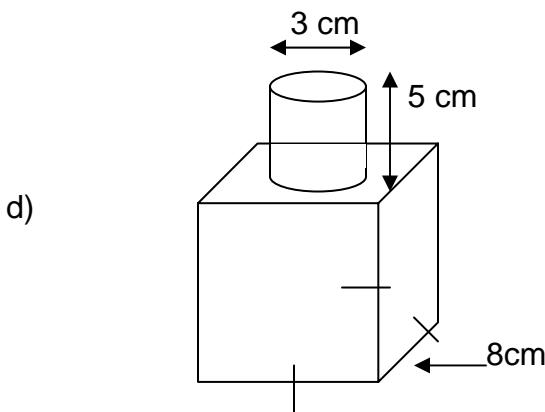
$$\begin{aligned}
 S.A. &= 2\pi r^2 + 2\pi rh \\
 S.A. &= 2(3.14)(5)^2 + 2\pi(5)(8) \\
 S.A. &= 157 + 251.2 \\
 S.A. &= 408.2\text{m}^2
 \end{aligned}$$

This is still area so the units are squared.

$$\begin{aligned}
 S.A. &= 2(wh + lh + lw) \\
 S.A. &= 2[(7)(8) + (22)(7) + (22)(8)] \\
 S.A. &= 2(56 + 154 + 176) \\
 S.A. &= 2(386) \\
 S.A. &= 772\text{cm}^2
 \end{aligned}$$

c)

$S.A. = 2\left(\frac{bh}{2}\right) + 2ls + lb$


$S.A. = 2\left(\frac{(6)(7.41)}{2}\right) + 2(12)(8) + (12)(6)$

$S.A. = 44.46 + 192 + 72$

$S.A. = 308.46 m^2$

There are two $\frac{bh}{2}$'s because of the triangles on each end.

There are 2 ls's because two of the rectangles that make the sides of the prism have the same dimensions

The top of the cylinder would take the place of the circle missing on the top of the cube.

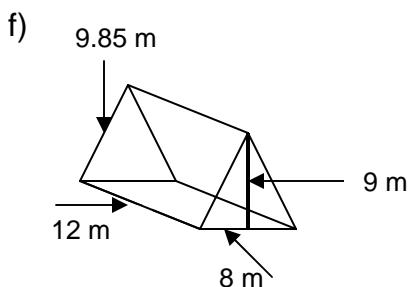
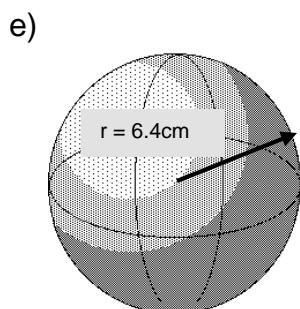
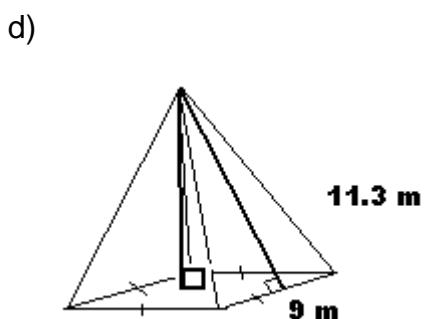
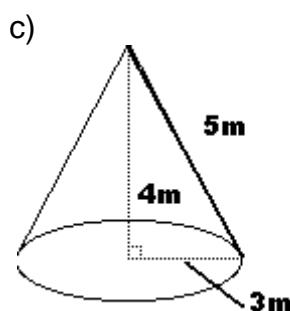
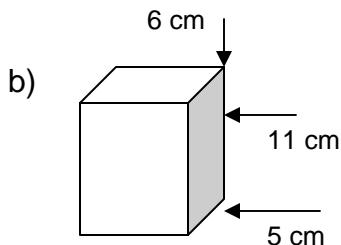
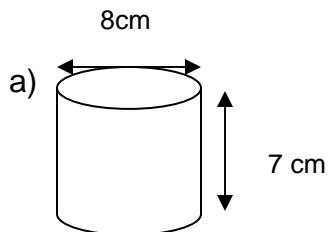
There is no bottom of the cylinder.

Therefore all that is needed to be calculated is the surface area of the cube and the side of the cylinder.

$S.A. = 6(b^2) + 2\pi rh$

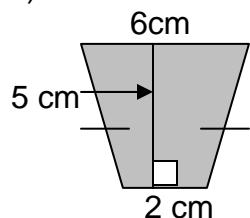
$S.A. = 6(8)^2 + 2(3.14)(1.5)(5)$

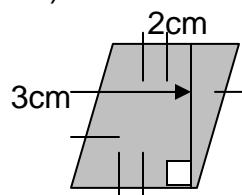
$S.A. = 384 + 47.1$







$S.A. = 431.1 \text{ cm}^2$

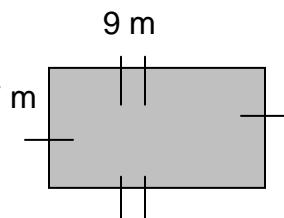
Since $l = b$ and $w = b$ and $h = b$ then $S.A. = 2(wh + lw + lh)$
 $= 2(bb + bb + bb)$
 $= 2(3b^2)$
 $= 6b^2$

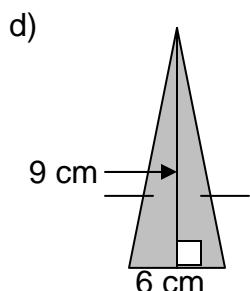
Support Questions

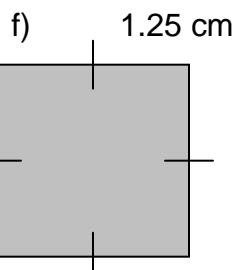
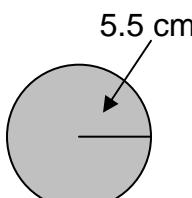

3. Calculate the surface area for each of the following objects.

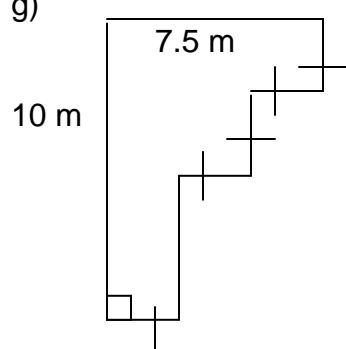

Key Question #16

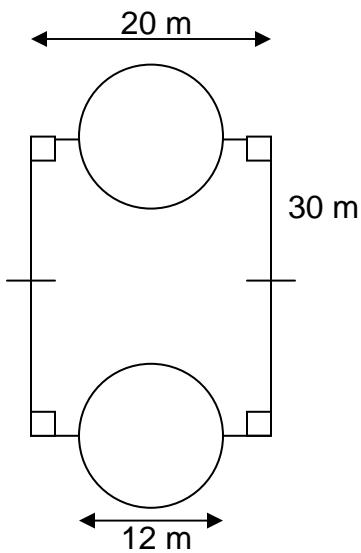
1. Calculate the area for each of the following objects. (10 marks)


a)

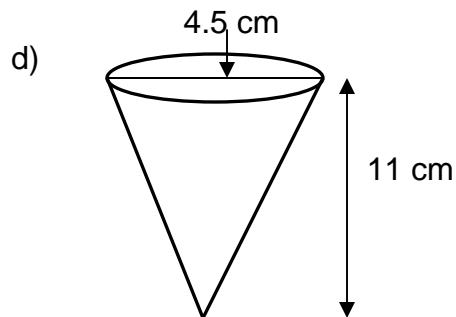
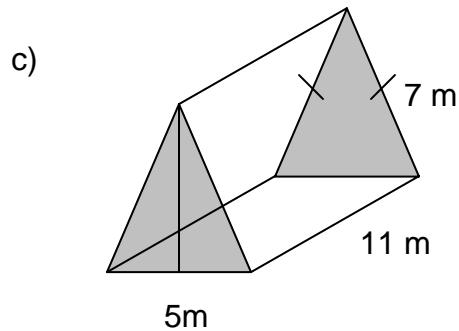
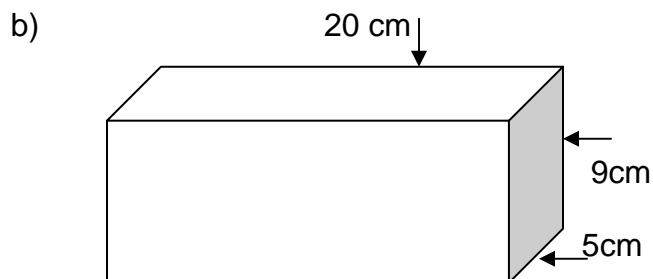
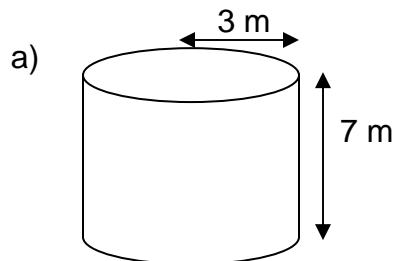

b)



c)


d)


e)

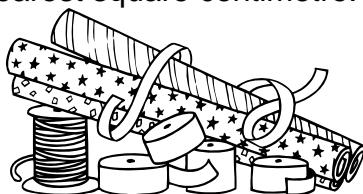
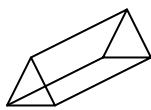
g)

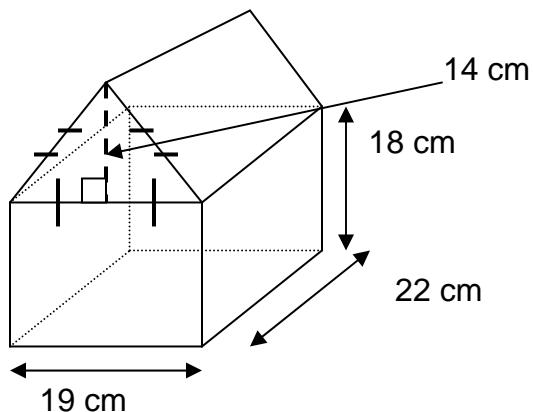
h)

Key Question #16 (continued)

2. Calculate the surface area for each of the following objects. (8 marks)

Key Question #16 (continued)


3. Determine the minimum amount of packaging needed to completely cover a triangular prism Toblerone bar with these dimensions:

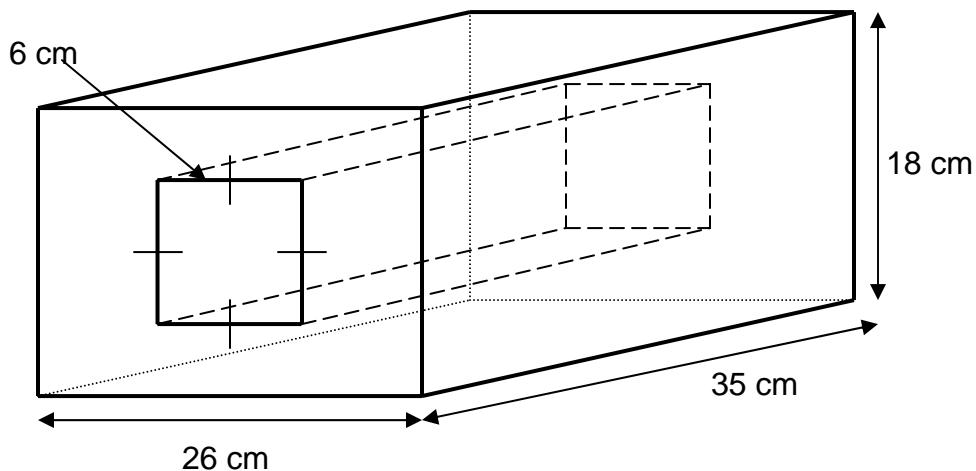
length 22.5 cm; triangular face has edges 4.5 cm and height 4.0.

Express the surface area to the nearest square centimetre. (3 marks)

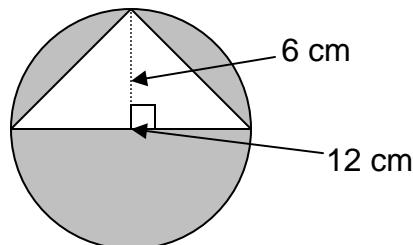
4. Calculate the surface area of the solid below. (4 marks)

5. Look at the formula for the volume of a rectangular prism. How does the surface area change in each case? (3 marks)

- a) The length is doubled.
- b) Both the length and the width are doubled.
- c) All the length, width, and height are doubled.


Key Question #16 (continued)

6. A cooler has a 60-L capacity. Its internal length is 60 cm and its internal width is 35 cm. Determine the internal height and the internal surface area of the cooler. (3 marks)

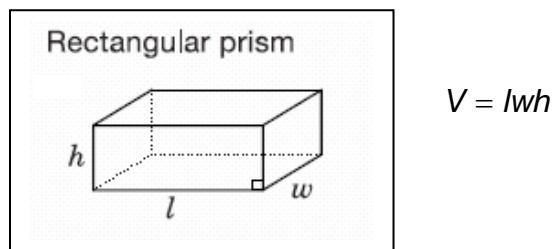
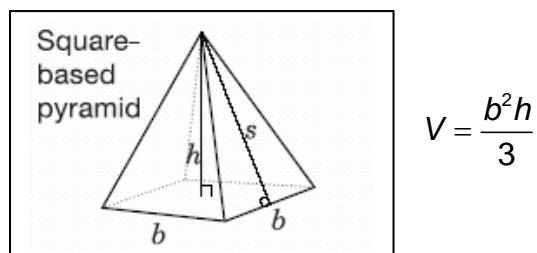
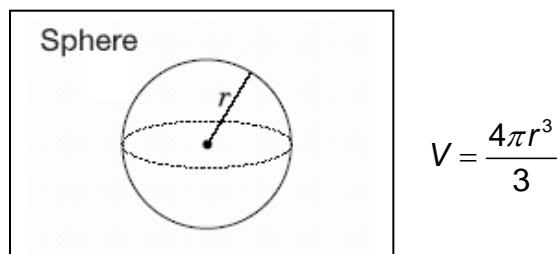
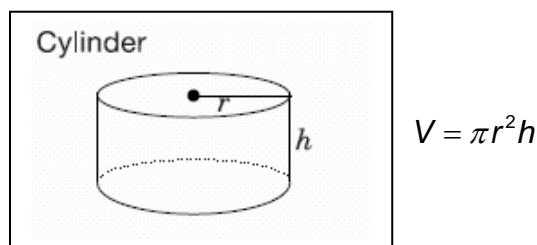

Hint $1 \text{ cm}^3 = 1 \text{ ml}$

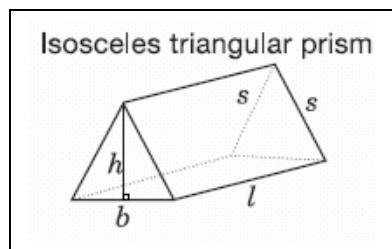
7. Calculate the surface area of the solid. (3 marks)

8. Calculate the shaded area. (3 marks)

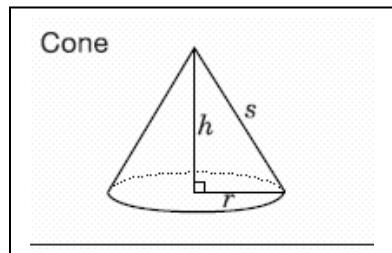
Volume

Lesson 17

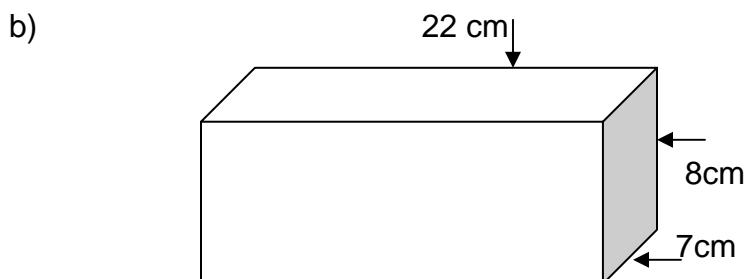
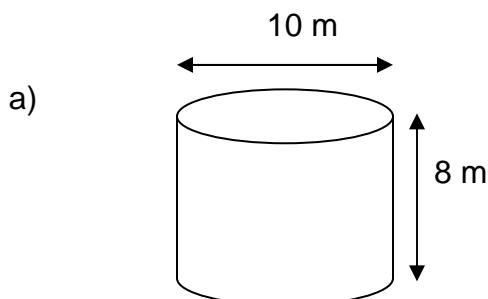




Lesson Seventeen Concepts

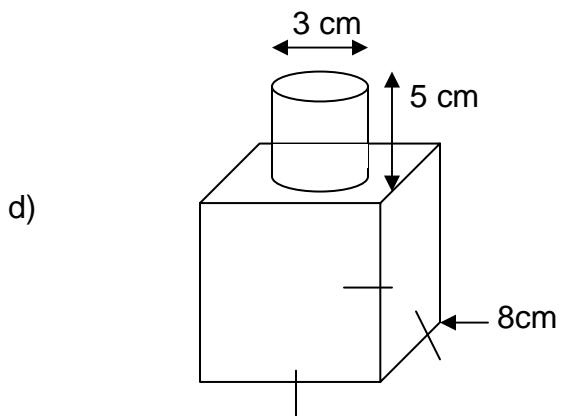
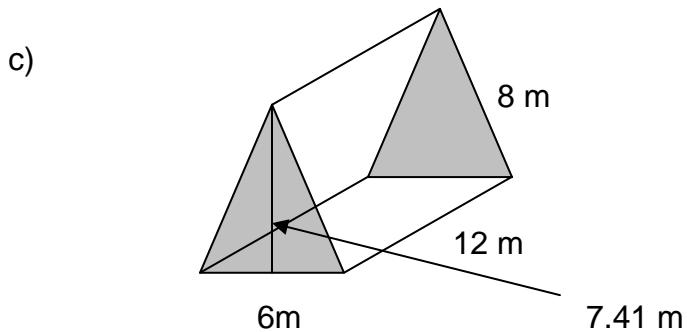

- Introduction to volume
- Radius and diameter
- Calculations using pi (π)
- Solving volume questions using formulas and substitution

Volume


Volume is the amount of space occupied by a 3-dimensional object.

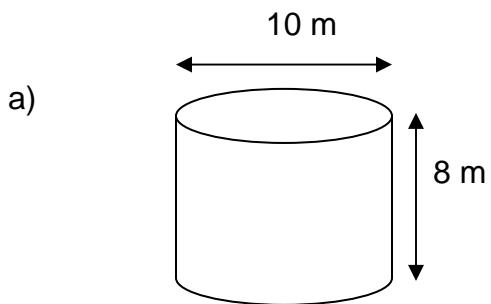
Formulas to be used to calculate volume.



$$V = \frac{bhl}{2}$$

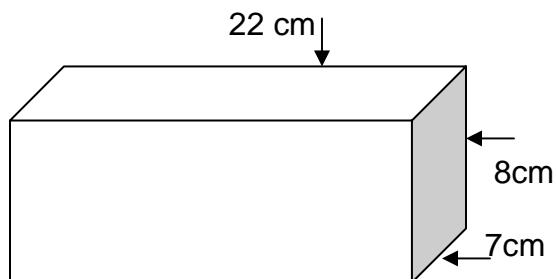
$$V = \frac{\pi r^2 h}{3}$$

Example


Find the volume of each figure.

Solution

Find the volume of each figure.

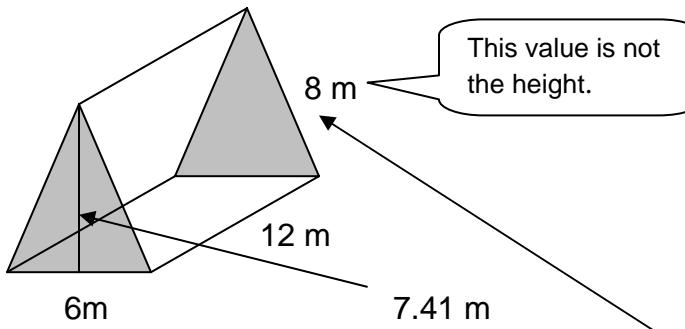


$$\begin{aligned}
 V &= \pi r^2 h \\
 V &= (3.14)(5)^2 8 \\
 V &= 628 \text{ m}^3
 \end{aligned}$$

$$\begin{aligned}
 5 \text{ m}^1 \times 5 \text{ m}^1 \times 8 \text{ m}^1 &= 628 \text{ m}^{1+1+1} \\
 &= 628 \text{ m}^3
 \end{aligned}$$

Volume is always measured in

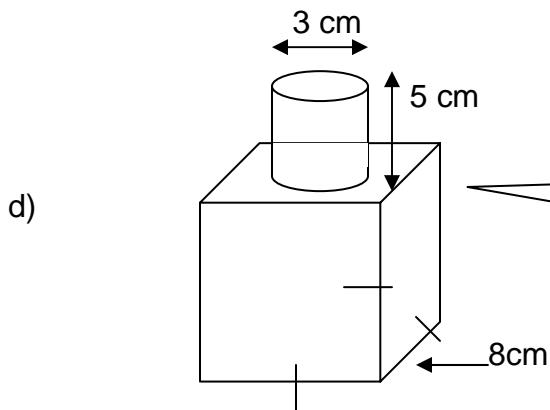
b)



$$V = lwh$$

$$V = (22)(7)(8)$$

$$V = 1232 \text{ cm}^3$$


c)

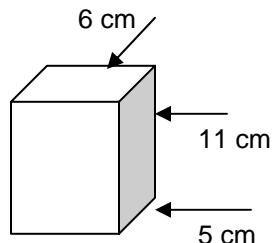
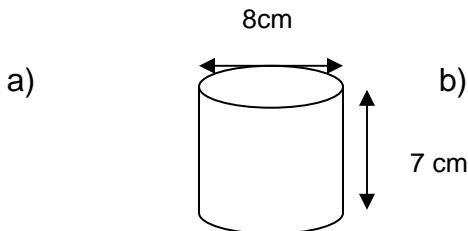
$$V = \frac{bhl}{2}$$

$$V = \frac{(6)(7.41)(12)}{2}$$

$$V = 266.76 \text{ m}^3$$

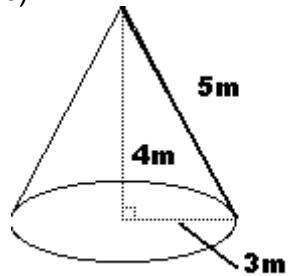
$$\begin{aligned}
 V_{cylinder} &= \pi r^2 h \\
 V_{cylinder} &= (3.14)(1.5)^2(8) \\
 V_{cylinder} &= 56.52 \text{ cm}^3
 \end{aligned}$$

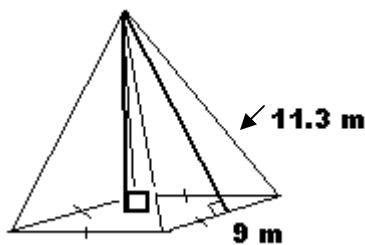
$$\begin{aligned}
 V_{cube} &= lwh \\
 V_{cube} &= (8)(8)(8) \\
 V_{cube} &= 512 \text{ cm}^3
 \end{aligned}$$



Since l , w , and h are all the same value we could use the formula $V = s^3$;
where s = side.
 $V = (8)^3$
 $V = 512 \text{ cm}^3$

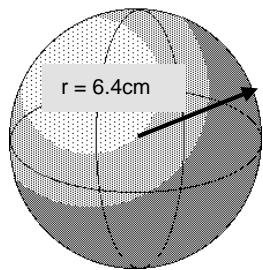
$$\begin{aligned}
 \text{Volume Total} &= \text{Volume of Cylinder} + \text{Volume of Cube} \\
 &= 56.52 \text{ cm}^3 + 512 \text{ cm}^3 \\
 &= 568.52 \text{ cm}^3
 \end{aligned}$$

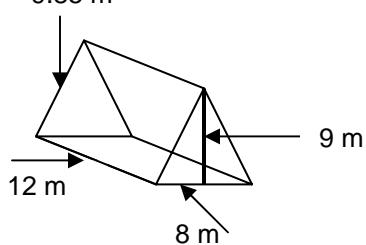
Support Questions


1. Calculate the volume for each of the following objects.

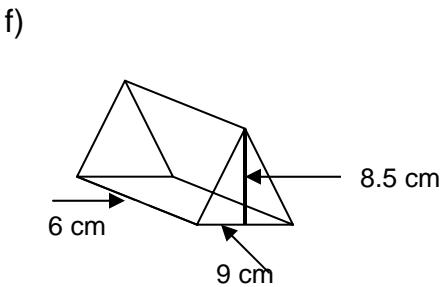
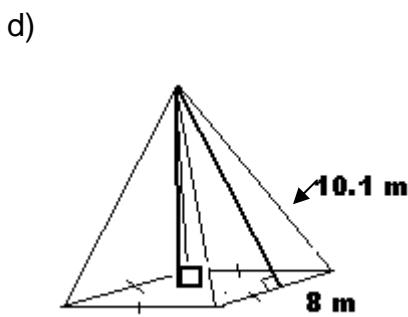
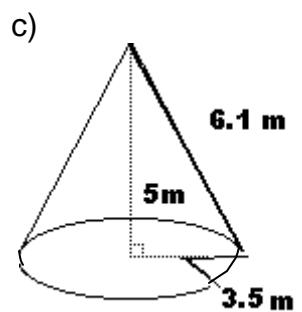
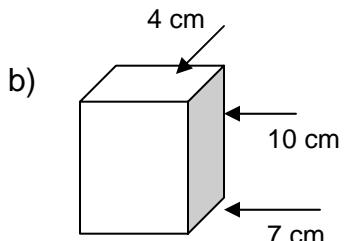
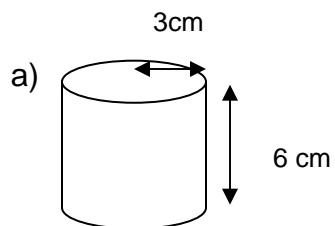


Support Questions (continued)


c)

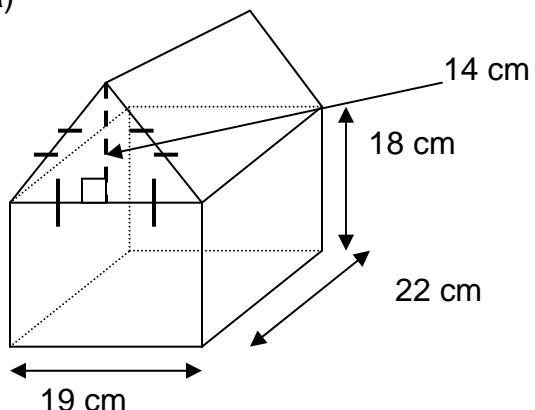

d)

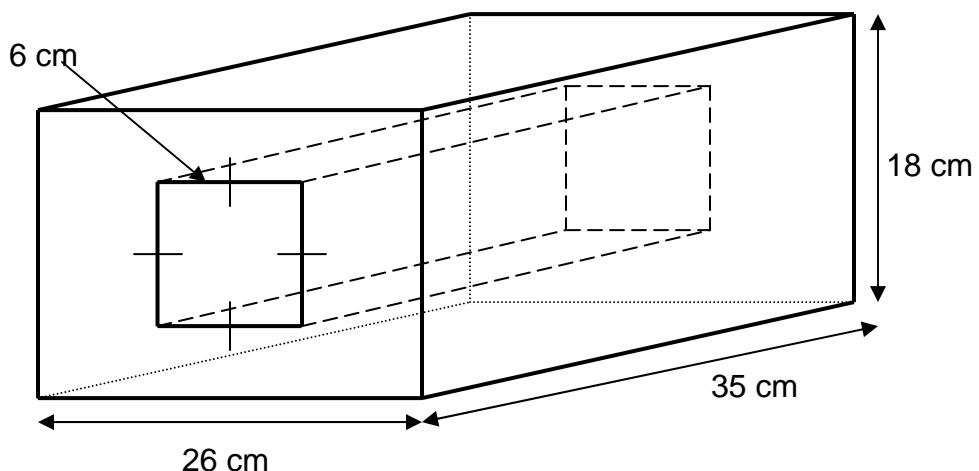
e)

f)

Key Question #17

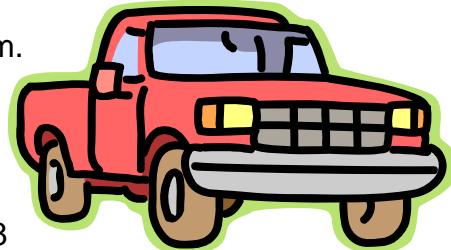

1. Calculate the volume for each of the following objects. (6 marks)


Key Question #17 (continued)

2. Calculate the volume of each solid. (8 marks)

a)

b)

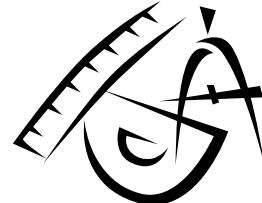


Key Question #17 (continued)

3. A cone has a height of 10 cm and a volume of 350cm^3 . What is the radius of the cone? (3 marks)
4. Look at the formula for the volume of a rectangular prism. How does the volume of a rectangular prism change in each case? (3 marks)
 - a) The length is doubled.
 - b) Both the length and width are doubled.
 - c) All the length, width, and height are doubled.
5. A storage bin is a rectangular prism. Its volume is 300 cm^3 . The width of the prism is one-third its length. Its height is two-thirds its length. Determine the dimension of the bin. (4 marks)
6. The box of a truck has dimensions 1 m by 2 m by 4m. Explain how this truck was able to carry 9 m^3 of sand. (3 marks)

7. A circular swimming pool has a diameter of 8 m and a depth of 2 m. What is the volume of the swimming pool? (3 marks)

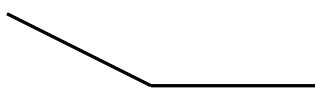
Angle **Geometry**

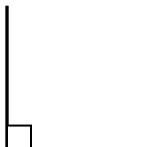

Lesson 18

Lesson Eighteen Concepts

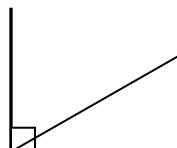
- Introduction to angle geometry
- Angle types
- Angle properties
- Angle properties involving parallel lines and transversals
- Finding unknown angles with justification

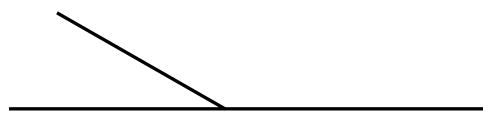
Angle Geometry

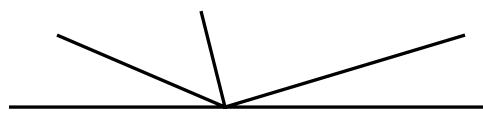

Angle Properties

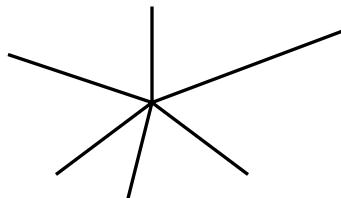

Acute Angle is an angle that is more than 0° and less than 90° .

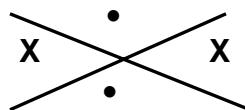
Obtuse Angle is an angle greater than 90° and less than 180° .


Right Angle is an angle that is 90° .

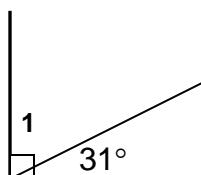

Straight Angle is an angle that is 180° .


Complementary Angles are angles that add to 90° .

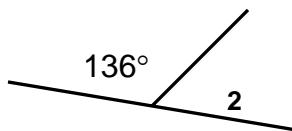

Supplementary Angles are angles that add to 180° .


Angles on a line add to 180° .

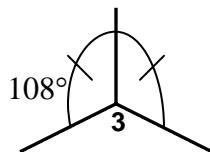
Angles at a point add to 360° .


Vertically opposite angles are equal.

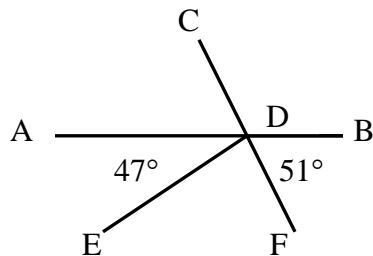
Example


Find the measure of each required angle and give a reason for that answer.

a)


$\angle 1 = \underline{\hspace{2cm}}$ Reason _____

b)

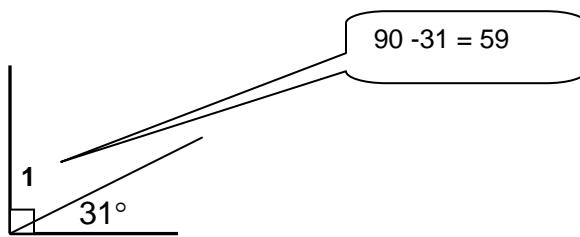

c)

$$\angle 2 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{4cm}}$$

$$\angle 3 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{4cm}}$$

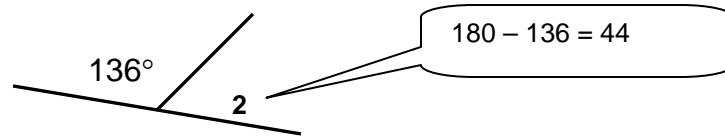
d)

$$\angle EDF = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{4cm}}$$

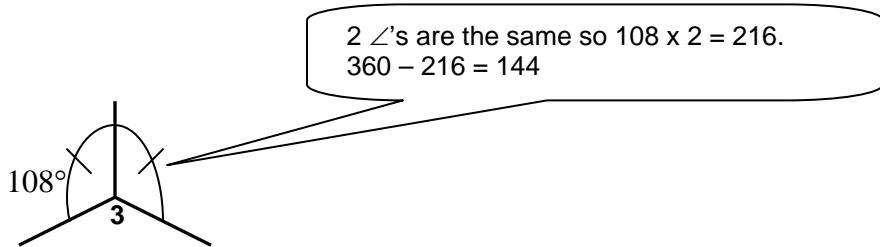

$$\angle CDB = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{4cm}}$$

$$\angle ADC = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{4cm}}$$

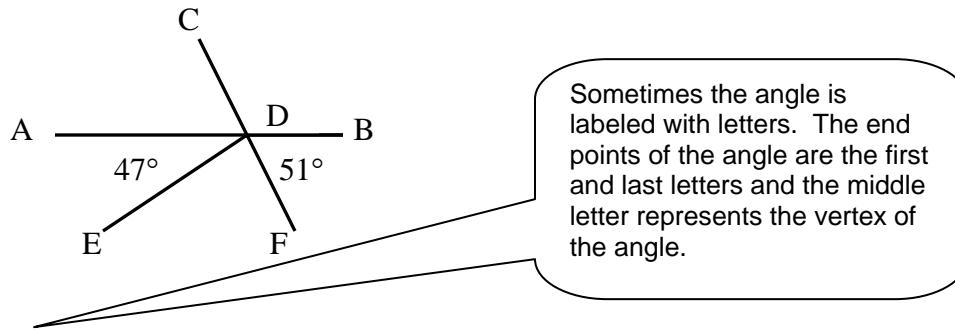
Solution


Find the measure of each required angle and give a reason for that answer.

a)


$$\angle 1 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{4cm}}$$

b)


$$\angle 2 = \underline{44^\circ} \quad \text{Reason } \underline{\text{Supplementary Angles}}$$

c)

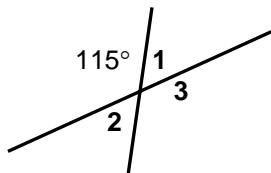
$$\angle 3 = \underline{144^\circ} \quad \text{Reason } \underline{\text{Angles at a point add to } 360^\circ}$$

d)

$$\angle EDF = \underline{82^\circ} \quad \text{Reason } \underline{\text{Angles on a line add to } 180^\circ}$$

$$\angle CDB = \underline{129^\circ} \quad \text{Reason } \underline{\text{Supplementary Angles}}$$

Vertically opposite $\angle FDB$.


$$\angle ADC = \underline{51^\circ} \quad \text{Reason } \underline{\text{Vertically Opposite Angles}}$$

Support Questions

Find the measure of each required angle and give a reason for that answer.

1.

$\angle 1 = \underline{\hspace{2cm}}$ Reason _____

$\angle 2 = \underline{\hspace{2cm}}$ Reason _____

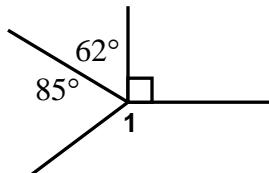
$\angle 3 = \underline{\hspace{2cm}}$ Reason _____

2.

$\angle AEC = \underline{\hspace{2cm}}$ Reason _____

$\angle AED = \underline{\hspace{2cm}}$ Reason _____

$\angle DEB = \underline{\hspace{2cm}}$ Reason _____


$\angle CEF = \underline{\hspace{2cm}}$ Reason _____

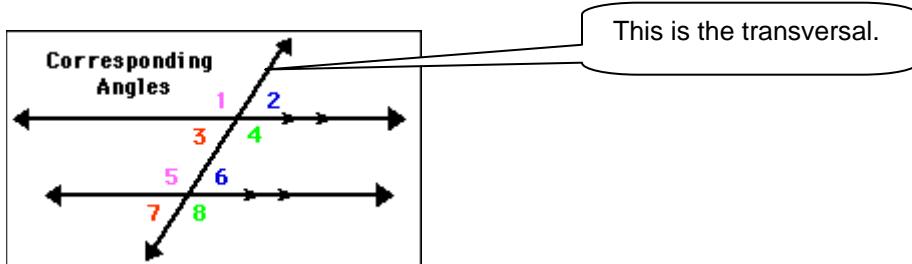
Support Questions (continued)

Find the measure of each required angle and give a reason for that answer.

3.

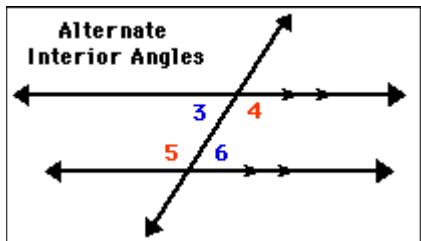
$$\angle 1 = \underline{\hspace{2cm}} \quad \text{Reason: } \underline{\hspace{5cm}}$$

4.

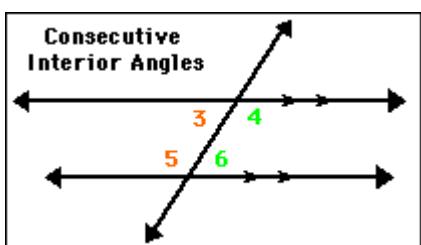


Parallel Lines and Transversal

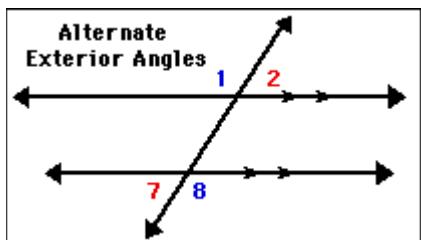
Parallel lines are lines in the same plane that do not intersect.


A **Transversal** is a line crossing two or more lines.

Corresponding Angles



If two parallel lines are cut by a transversal, then each pair of corresponding angles are *congruent*. $\angle 1$ and $\angle 5$, $\angle 2$ and $\angle 6$, $\angle 3$ and $\angle 7$, $\angle 4$ and $\angle 8$

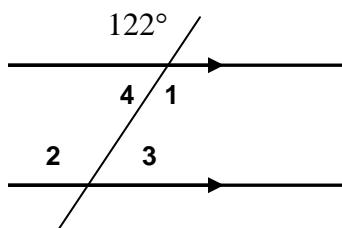

Means the angles are the same degrees.

Alternate Interior Angles

If two parallel lines are cut by a transversal, then each pair of alternate interior angles are congruent. $\angle 3$ and $\angle 6$, $\angle 4$ and $\angle 5$

Same-Side Interior Angles

If two parallel lines are cut by a transversal, then each pair of consecutive interior angles are supplementary. $\angle 3$ and $\angle 5$, $\angle 4$ and $\angle 6$

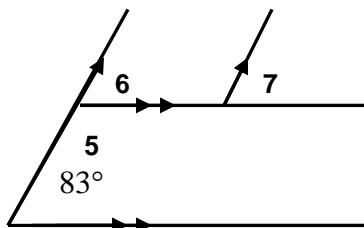

Alternate Exterior Angle

If two parallel lines are cut by a transversal, then each pair of alternate exterior angles are congruent. $\angle 1$ and $\angle 8$, $\angle 2$ and $\angle 7$

Example

Find the measure of each required angle and give a reason for that answer.

a)


$$\angle 1 = \underline{\hspace{2cm}} \text{ Reason } \underline{\hspace{5cm}}$$

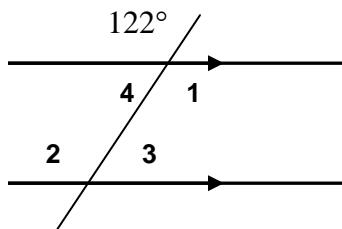
$$\angle 2 = \underline{\hspace{2cm}} \text{ Reason } \underline{\hspace{5cm}}$$

$$\angle 3 = \underline{\hspace{2cm}} \text{ Reason } \underline{\hspace{5cm}}$$

$$\angle 4 = \underline{\hspace{2cm}} \text{ Reason } \underline{\hspace{5cm}}$$

b)

$$\angle 5 = \underline{\hspace{2cm}} \text{ Reason } \underline{\hspace{5cm}}$$


$$\angle 6 = \underline{\hspace{2cm}} \text{ Reason } \underline{\hspace{5cm}}$$

$$\angle 7 = \underline{\hspace{2cm}} \text{ Reason } \underline{\hspace{5cm}}$$

Solution

Find the measure of each required angle and give a reason for that answer.

a)

$\angle 1$ and $\angle 2$

$$\angle 1 = 122^\circ \text{ Reason } \underline{\text{Vertically Opposite}}$$

$$\angle 2 = 122^\circ \text{ Reason } \underline{\text{Alternate Interior Angles}}$$

$$\angle 3 = 58^\circ \text{ Reason } \underline{\text{Supplementary Angles}}$$

$$\angle 4 = 58^\circ \text{ Reason } \underline{\text{Alternate Exterior Angle}}$$

or Supplementary Angle Supplementary to $\angle 1$.

or Vertically Opposite Vertically opposite to $\angle 3$.

b)

$\angle 5$ and 83° add to 180° .

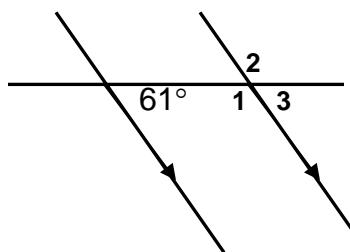
$$\angle 5 = 97^\circ \text{ Reason } \underline{\text{Consecutive Interior Angle}}$$

$\angle 5$ and $\angle 6$ add to 180° .

$$\angle 6 = 83^\circ \text{ Reason } \underline{\text{Supplementary Angles}}$$

or Corresponding Angles $\angle 6$ and 83° correspond.

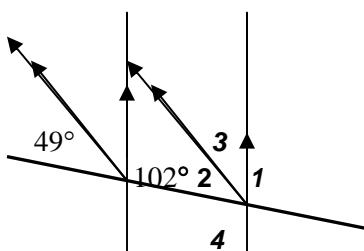
$$\angle 7 = 83^\circ \text{ Reason } \underline{\text{Corresponding Angles}}$$


$\angle 6$ and $\angle 7$ correspond.

Support Questions

Find the measure of each required angle and give a reason for that answer.

5.



$$\angle 1 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{5cm}}$$

$$\angle 2 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{5cm}}$$

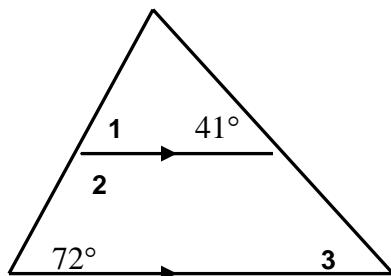
$$\angle 3 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{5cm}}$$

6.

$$\angle 1 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{5cm}}$$

$$\angle 2 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{5cm}}$$

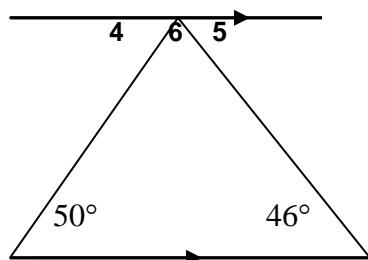
$$\angle 3 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{5cm}}$$


$$\angle 4 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{5cm}}$$

Support Questions (continued)

Find the measure of each required angle and give a reason for that answer.

7.



$$\angle 1 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{5cm}}$$

$$\angle 2 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{5cm}}$$

$$\angle 3 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{5cm}}$$

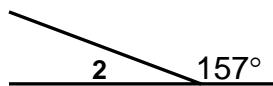
8.

$$\angle 4 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{5cm}}$$

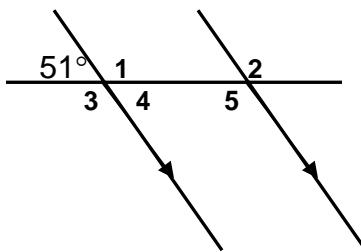
$$\angle 5 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{5cm}}$$

$$\angle 6 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{5cm}}$$

Key Question #18


Find the measure of each required angle and give a reason for that answer.

1. (2 marks)


$$\angle 1 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{4cm}}$$

2. (2 marks)

$$\angle 2 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{4cm}}$$

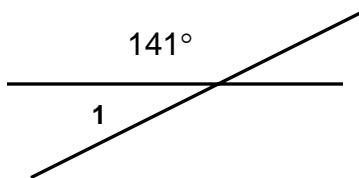
3. (10 marks)

$$\angle 1 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{4cm}}$$

$$\angle 2 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{4cm}}$$

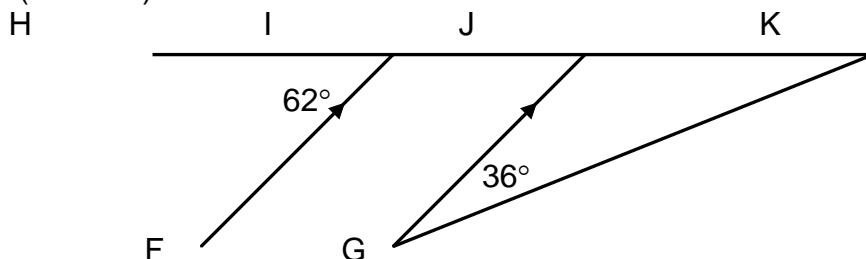
$$\angle 3 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{4cm}}$$

$$\angle 4 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{4cm}}$$

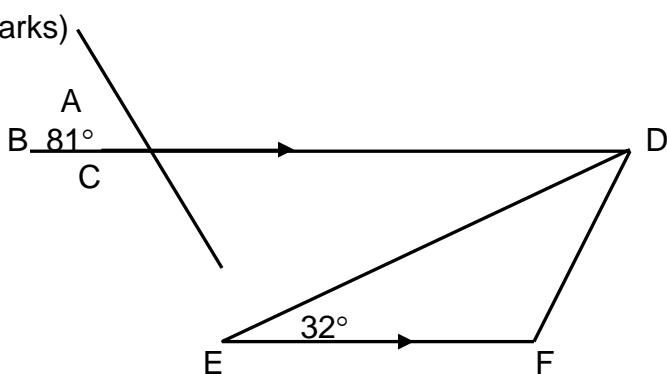

$$\angle 5 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{4cm}}$$

Key Question #18 (continued)

Find the measure of each required angle and give a reason for that answer.

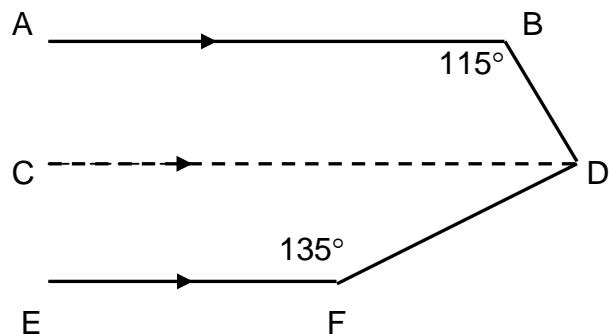

4. (2 marks)

$$\angle 1 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{4cm}}$$

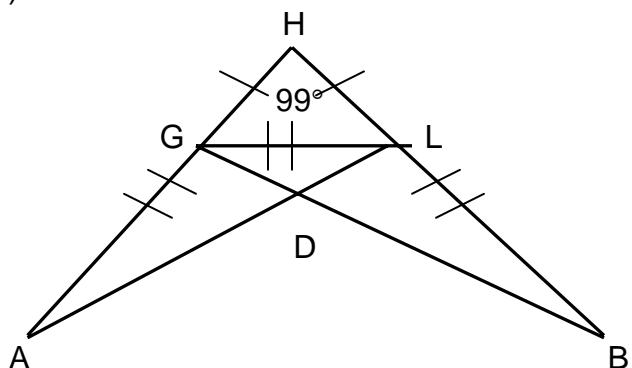

For questions 5 – 8, find the measure of the required angle. List in sequence with reasons the angles you had to find to determine the required angle.

5. (4 marks)

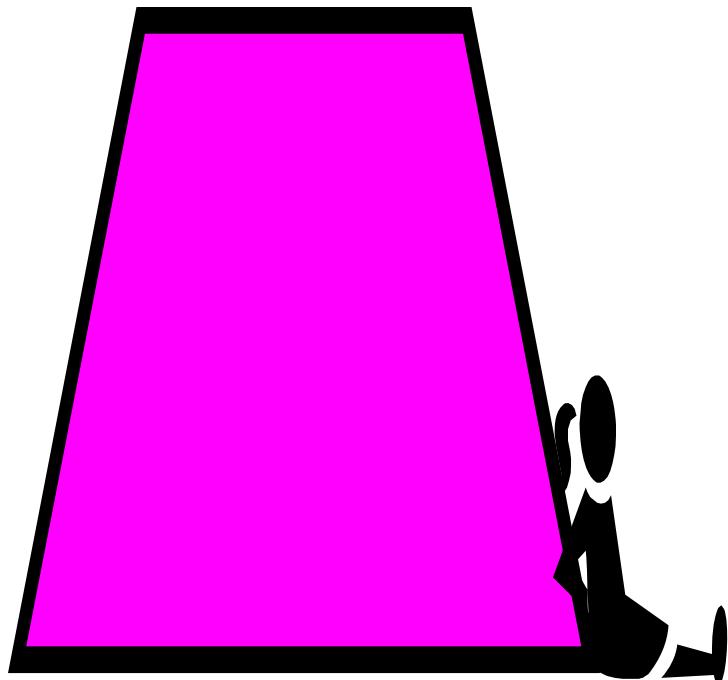
$$\angle JKG = \underline{\hspace{2cm}}$$


6. (4 marks)

$$\angle AED = \underline{\hspace{2cm}}$$


Key Question #18 (continued)

7. (4 marks)


$$\angle BDF = \underline{\hspace{2cm}}$$

8. (4 marks)

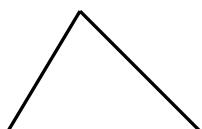
$$\angle ADB = \underline{\hspace{2cm}}$$

Triangles and Quadrilaterals

Lesson 19

Lesson Nineteen Concepts

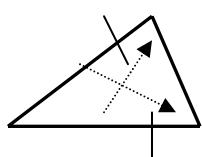
- Introduction to Triangles and Quadrilaterals
- Triangle types
- Triangle properties
- Quadrilateral types
- Quadrilateral properties
- Finding unknown angles with justification


Triangles and Quadrilaterals

Triangle Types and Properties

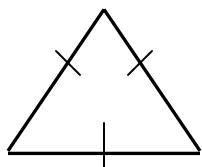
∠sum of a triangle is 180°

Scalene Triangle


Properties

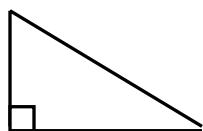
- 1) no sides equal
- 2) no angles equal

Isosceles Triangle


Properties

- 1) two sides equal
- 2) angles opposite equal sides are equal

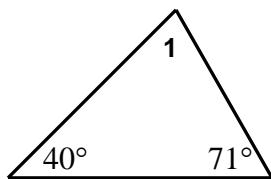
Equilateral Triangle


Properties

- 1) all sides equal
- 2) all angles equal (each is 60°)

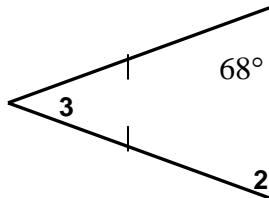
Right Triangle

Properties



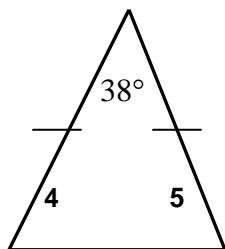
- 1) one right angle (90°)
- 2) hypotenuse is opposite the right angle
- 3) Property of Pythagoras $a^2 + b^2 = c^2$

Example


Find the measure of each required angle and give a reason for that answer.

a)

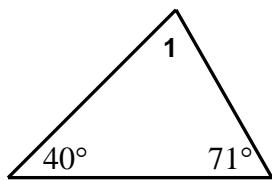
$\angle 1 = \underline{\hspace{2cm}}$ Reason _____


b)

$\angle 2 = \underline{\hspace{2cm}}$ Reason _____

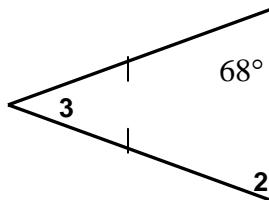
$\angle 3 = \underline{\hspace{2cm}}$ Reason _____

c)


$$\angle 4 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{4cm}}$$

$$\angle 5 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{4cm}}$$

Solution


Find the measure of each required angle and give a reason for that answer.

a)

$$\angle 1 = \underline{69^\circ} \quad \text{Reason } \underline{\text{sum of a } \triangle = 180^\circ}$$

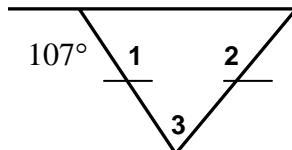
b)

$$\angle 2 = \underline{68^\circ} \quad \text{Reason } \underline{\text{Isos } \triangle}$$

$$\angle 3 = \underline{44^\circ} \quad \text{Reason } \underline{\text{sum of a } \triangle = 180^\circ}$$

c)

$$\angle 4 = 71^\circ \quad \text{Reason } \text{Isos } \Delta, \angle \text{sum of a } \Delta = 180^\circ$$

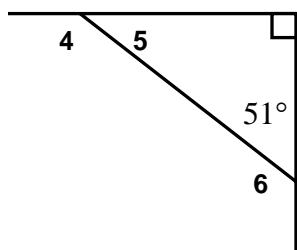

$$\angle 5 = 71^\circ \quad \text{Reason } \text{Isos } \Delta$$

Support Questions

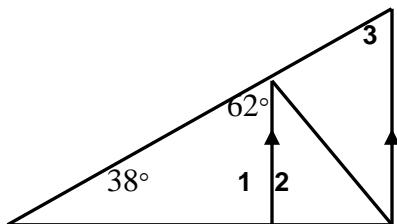
Find the measure of each required angle and give a reason for that answer.

1.

$$\angle 1 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{5cm}}$$


$$\angle 2 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{5cm}}$$

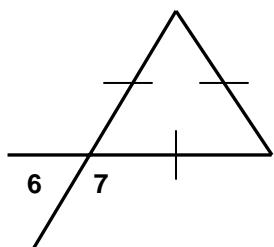
$$\angle 3 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{5cm}}$$



Support Questions (continued)

2.

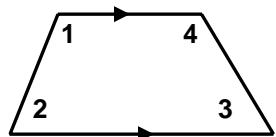
 $\angle 4 = \underline{\hspace{2cm}}$ Reason _____ $\angle 5 = \underline{\hspace{2cm}}$ Reason _____ $\angle 6 = \underline{\hspace{2cm}}$ Reason _____


3.

 $\angle 1 = \underline{\hspace{2cm}}$ Reason _____ $\angle 2 = \underline{\hspace{2cm}}$ Reason _____ $\angle 3 = \underline{\hspace{2cm}}$ Reason _____

Support Questions (continued)

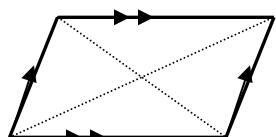
4.


$\angle 6 = \underline{\hspace{2cm}}$ Reason _____

$\angle 7 = \underline{\hspace{2cm}}$ Reason _____

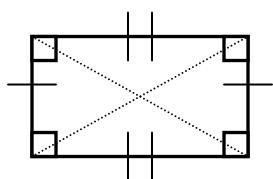
Quadrilateral Types and Properties

∠sum of a quadrilateral is 360°

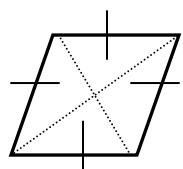

Trapezoid

Properties

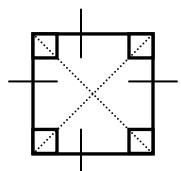
- 1) one pair of parallel sides
- 2) $\angle 1$ and $\angle 2 = 180^\circ$, $\angle 3$ and $\angle 4 = 180^\circ$
(interior ∠'s on same side of transversal)


Parallelogram

Properties


- 1) opposite sides equal and parallel
- 2) opposite ∠'s are equal
- 3) consecutive ∠'s add to 180°
- 4) diagonals bisect each other

Rectangle

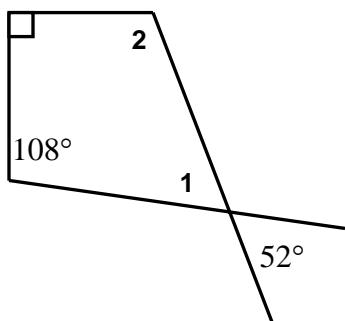


Properties

- 1) opposite sides equal and parallel
- 2) each ∠ is 90°
- 3) diagonals are equal and bisect each other

RhombusProperties

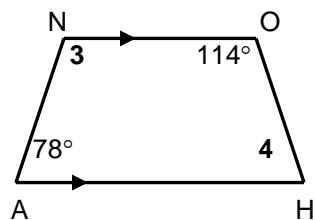
- 1) parallelogram with 4 equal sides
- 2) diagonals bisect at right angles
- 3) diagonals bisect the \angle 's of the rhombus


SquareProperties

- 1) rhombus with 4 right \angle 's, or
- 2) rectangle with 4 equal sides

Example

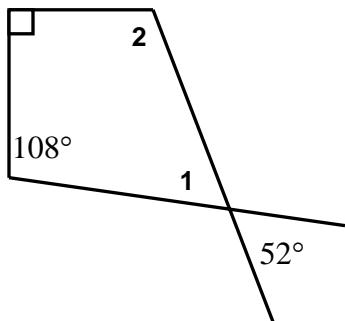
Find the measure of each required angle and give a reason for that answer.


a)

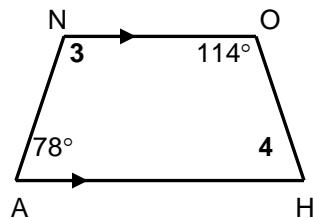
$\angle 1 = \underline{\hspace{2cm}}$ Reason _____

$\angle 2 = \underline{\hspace{2cm}}$ Reason _____

b)



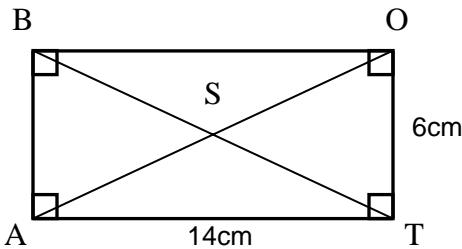
NOAH is a _____


 $\angle 3 = \underline{\hspace{2cm}}$ Reason _____ $\angle 4 = \underline{\hspace{2cm}}$ Reason _____**Solution**

Find the measure of each required angle and give a reason for that answer.

a)

 $\angle 1 = \underline{\hspace{2cm}} 52^\circ$ Reason Vertically Opposite Angles $\angle 2 = \underline{\hspace{2cm}} 110^\circ$ Reason \angle sum of a quad = 360 $^\circ$


b)

NOAH is a Trapezoid $\angle 3 = 102^\circ$ Reason Consecutive Interior Angles = 180° $\angle 4 = 66^\circ$ Reason \angle sum of a quad = 360° or Consecutive Interior Angles = 180°

Support Questions

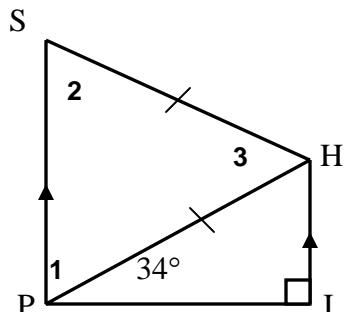
Complete the following questions by naming the quadrilateral, finding the measures of angles and lengths, and giving reasons for the answers.

5.

BOAT is a _____

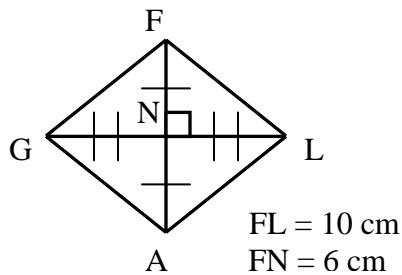
AB = TO Reason _____

AB = ____cm Reason _____


BS = ____cm Reason _____

 $\triangle BSO$ is _____ $\triangle OBA$ is _____

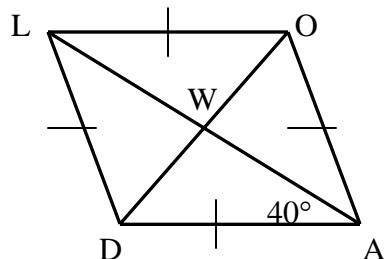
Support Questions (continued)


6.

SHIP is a _____

 $\angle 1 = \underline{\hspace{2cm}}$ Reason _____ $\angle 2 = \underline{\hspace{2cm}}$ Reason _____ $\angle 3 = \underline{\hspace{2cm}}$ Reason _____

7.


FLAG is a _____

 $FG = \underline{\hspace{2cm}}\text{ cm}$ Reason _____ $NL = \underline{\hspace{2cm}}\text{ cm}$ Reason _____ $FA = \underline{\hspace{2cm}}\text{ cm}$ Reason _____

Support Questions (continued)

8.

LOAD is a _____

ΔDOL is _____

$$\angle AWD = \underline{\hspace{2cm}} \text{ Reason } \underline{\hspace{5cm}}$$

Δ DWL is _____

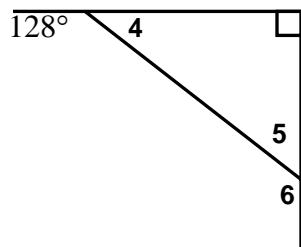
\angle LDA = ____ Reason

$$\angle DLA = \text{Reason}$$

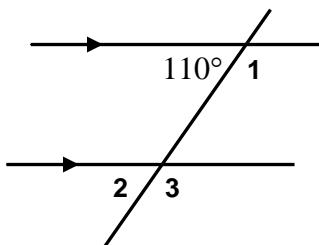
Key Question #19

Find the measure of each required angle and give a reason for that answer.

1. (6 marks)

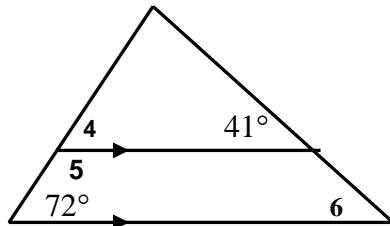

$$\angle 1 = \underline{\hspace{2cm}} \quad \text{Reason } \underline{\hspace{3cm}}$$

$\angle 2 =$ _____ Reason _____

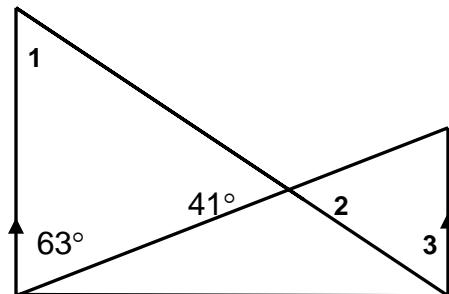

$\angle 3 =$ Reason

Key Question #19 (continued)

2. (6 marks)


 $\angle 4 = \underline{\hspace{2cm}}$ Reason _____ $\angle 5 = \underline{\hspace{2cm}}$ Reason _____ $\angle 6 = \underline{\hspace{2cm}}$ Reason _____

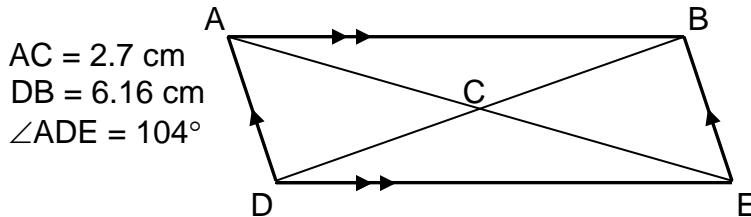
3. (6 marks)


 $\angle 1 = \underline{\hspace{2cm}}$ Reason _____ $\angle 2 = \underline{\hspace{2cm}}$ Reason _____ $\angle 3 = \underline{\hspace{2cm}}$ Reason _____

Key Question #19 (continued)

4. (6 marks)

 $\angle 4 = \underline{\hspace{2cm}}$ Reason _____ $\angle 5 = \underline{\hspace{2cm}}$ Reason _____ $\angle 6 = \underline{\hspace{2cm}}$ Reason _____


5. (6 marks)

 $\angle 1 = \underline{\hspace{2cm}}$ Reason _____ $\angle 2 = \underline{\hspace{2cm}}$ Reason _____ $\angle 3 = \underline{\hspace{2cm}}$ Reason _____

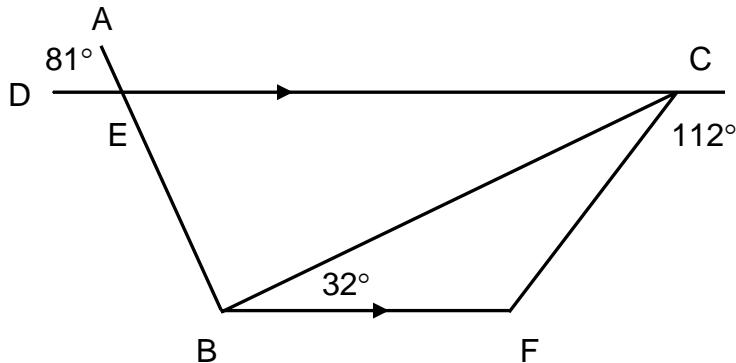
Key Question #19 (continued)

6. (9 marks)

ABDE is a _____

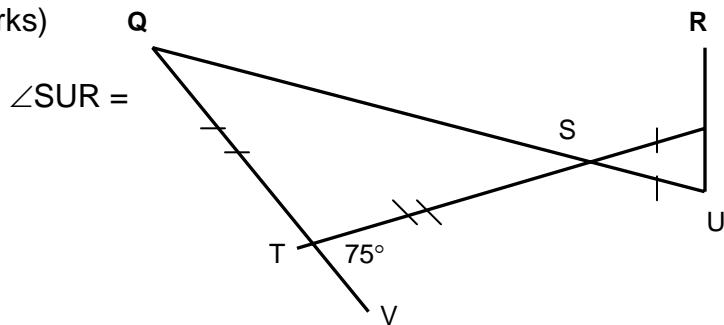
CE = ____ cm Reason _____

DC = ____ cm Reason _____

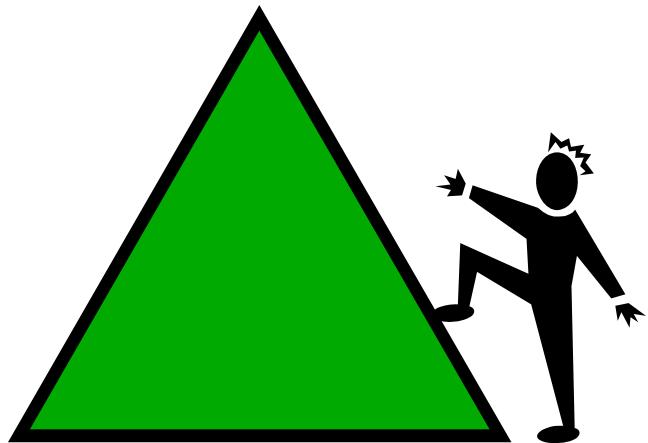

$\angle ABE =$ ____ Reason _____

$\angle DEB =$ ____ Reason _____

For the following questions find the measure of the required angle. List in sequence with reasons the angles you had to find to determine the required angle.


7. (3 marks)

$\angle FCB =$

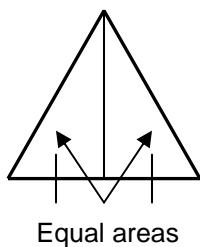


Key Question #19 (continued)

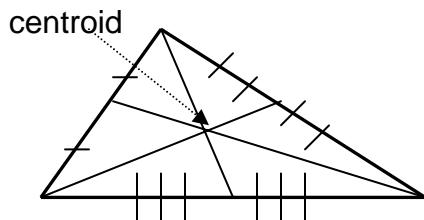
8. (3 marks)

Triangle Medians and Altitudes

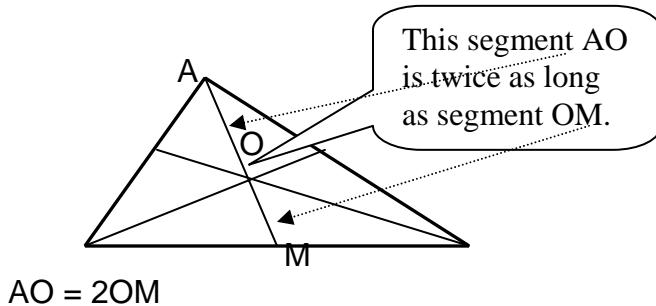
Lesson 20


Lesson Twenty Concepts

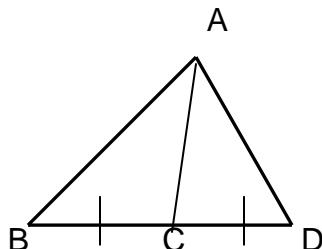
- Introduction to Triangle medians and altitudes
- Median properties
- Centroid
- Altitude properties
- Orthocentre


Triangle Medians and Altitudes

Medians Properties


1. A median divides the area of a triangle in half.

2. The three medians of a triangle meet at one point. This point is called the centroid.


3. On each median, the centroid is twice as far from the vertex as it is from the midpoint of the opposite side.

Example

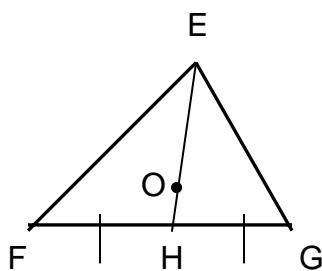
The area of $\triangle ABC$ is 56 cm^2 . Calculate the area of $\triangle ABD$.

a)

Solution

a) Since AC is the median of $\triangle ABD$ and $\triangle ABC$ is 56 cm^2 then $\triangle ABC$ is half of the area of $\triangle ABD$. Therefore, $\triangle ABD$'s area is twice the area of $\triangle ABC$.

$$\Delta ABD = 2 \times 56$$


$$\Delta ABD = 112 \text{ cm}^2$$

Property 1

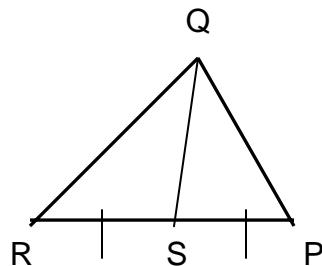
Example

In $\triangle EFG$, O is the centroid; $OH = 12 \text{ cm}$. Calculate the length of HE.

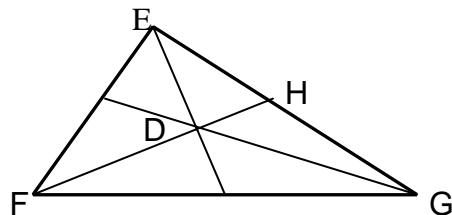
b)

Solution

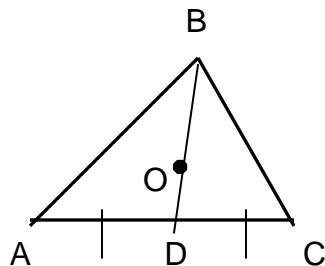
b) Since OH is $1/3$ of the length HE then HE is three times that length.


$$\begin{aligned} HE &= 3(OH) \\ &= 3(12) \\ &= 36 \text{ cm} \end{aligned}$$

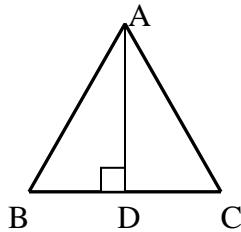
Property 3



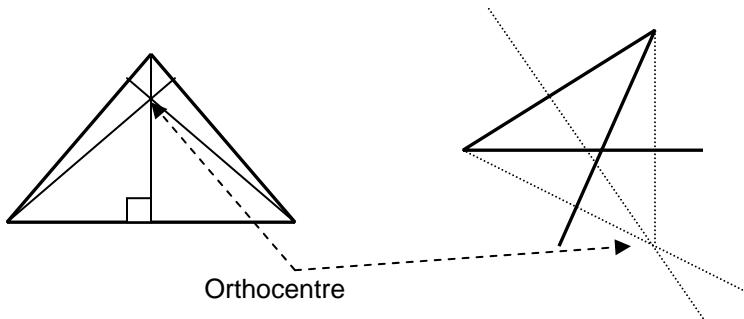
Support Questions


1. The area of $\triangle PQR$ is 64 cm^2 . Calculate the area of $\triangle PQS$.

2. In $\triangle EFG$, D is the centroid; $DF = 9 \text{ cm}$. Calculate the length of DH.

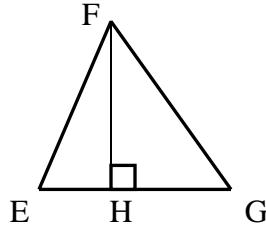


3. In $\triangle ABC$, O is the centroid; $DO = 12 \text{ cm}$. Calculate the length of OB.



Altitude Properties of a Triangle

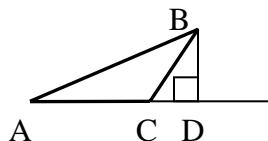
1. The length of an altitude is a height of the triangle. It is used to calculate the area of a triangle


2. The three altitudes of a triangle meet at the orthocentre, O. When the triangle is obtuse, the orthocentre is outside the triangle.

Example

In $\triangle EFG$, the altitude $FH = 10$ cm and the base $EG = 12$ cm. Calculate the area of $\triangle EFG$.

a)


Solution

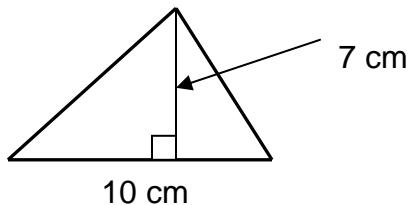
$$A = \frac{bh}{2}$$
$$A = \frac{(12)(10)}{2}$$
$$A = 60\text{cm}^2$$

Example

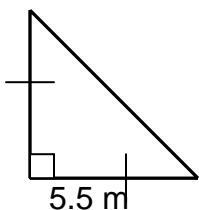
The area of $\triangle ABC$ is 16 cm^2 . Altitude $BD = 2 \text{ cm}$. What is the length of AC ?

b)

Solution


$$A = \frac{bh}{2}$$
$$16 = \frac{(b)(2)}{2}$$
$$16 = \frac{2b}{2}$$
$$16 = b$$

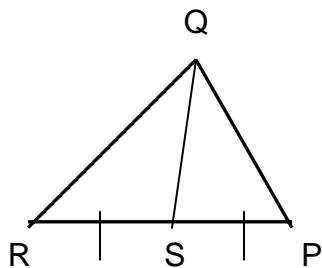
Therefore the length of AC is 16 cm .



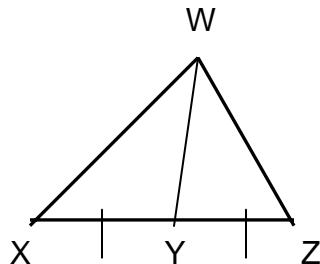
Support Questions

4. Calculate the area of the triangle below.

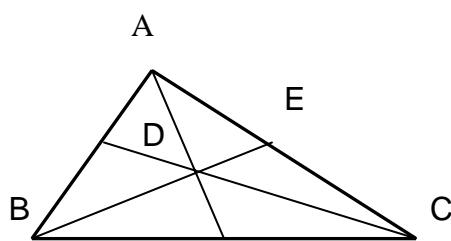
5. Calculate the area of the triangle below.



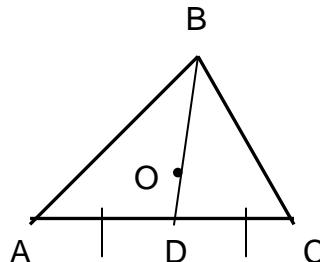
6. Brianna is planning to paint a triangle on a rectangular piece of paper that is 30 cm by 44 cm. Calculate the area of the largest triangle she can paint.

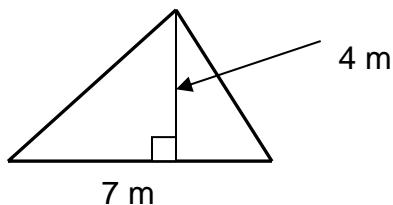

Key Question #20

1. The area of $\triangle QSP$ is 80 cm^2 . Calculate the area of $\triangle QRP$. (2 marks)

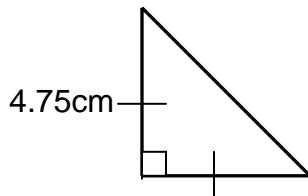


Key Question #20 (continued)

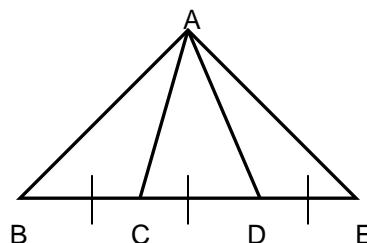

2. The area of $\triangle WXZ$ is 34 cm^2 . Calculate the area of $\triangle WXY$. (2 marks)


3. In $\triangle ABC$, D is the centroid; $DB = 12 \text{ cm}$. Calculate the length of DE. (2 marks)

4. In $\triangle ABC$, O is the centroid; $DO = 9 \text{ cm}$. Calculate the length of OB. (2 marks)



5. Calculate the area of the triangle below. (2 marks)



Key Question #20 (continued)

6. Calculate the area of the triangle below. (2 marks)

7. The area of $\triangle ABC$ is 36 cm^2 . What is the area of $\triangle ABE$? (3 marks)

8. Draw the triangle with vertices B(3,1), C(5,7) and D(8,1). Draw the altitude from C to join BD at E. (6 marks)

- State the coordinates of point E.
- Determine the equation of the altitude.

9. Plot $\triangle DEF$ with vertices D(0,3), E(8,5) and F(4,1). (6 marks)

- Draw the medians. Find the coordinates of the centroid.
- Find the equations of the three medians of the triangle.

10. The side of XY of $\triangle XYZ$ has slope 3. Find the slope of the altitude from Z to XY. (4 marks)

11. Explain what the medians of a triangle are. The word “median” is an appropriate word. Why do you think this is so? (4 marks)

Lesson 16

1. a.

$$\begin{aligned}
 A &= \frac{(a+b)h}{2} \\
 &= \frac{(8+3)4}{2} \\
 &= \frac{44}{2} \\
 &= 22 \text{ cm}^2
 \end{aligned}$$

b.

$$\begin{aligned}
 A &= bh \\
 &= (5)(6) \\
 &= 30 \text{ cm}^2
 \end{aligned}$$

c.

$$\begin{aligned}
 A &= lw \\
 &= (10)(5) \\
 &= 50 \text{ cm}^2
 \end{aligned}$$

d.

$$\begin{aligned}
 A &= \frac{bh}{2} \\
 &= \frac{(3.5)(7)}{2} \\
 &= \frac{24.5}{2} \\
 &= 12.25 \text{ cm}^2
 \end{aligned}$$

e.

$$\begin{aligned}
 A &= \pi r^2 \\
 &= (3.14)(4)^2 \\
 &= 3.14(16) \\
 &= 50.24 \text{ cm}^2
 \end{aligned}$$

f.

$$\begin{aligned}
 A &= 4l \\
 &= 4(8) \\
 &= 64 \text{ cm}^2
 \end{aligned}$$

g.

$$\begin{aligned}
 A_{\text{total}} &= A_1 + A_2 \\
 A_1 &= lw \\
 &= (12)(12) \\
 &= 144 \text{ m}^2 \\
 A_2 &= lw \\
 &= (6)(6) \\
 &= 36 \text{ m}^2 \\
 A_{\text{total}} &= 144 + 36 \\
 &= 180 \text{ m}^2
 \end{aligned}$$

h.

$$\begin{aligned}
 A_{\text{total}} &= A_1 + A_2 \\
 A_1 &= \frac{\pi r^2}{2} \\
 &= \frac{(3.14)(5)^2}{2} \\
 &= \frac{78.5}{2} \\
 &= 39.25 \text{ cm}^2
 \end{aligned}$$

i.

$$\begin{aligned}
 A &= .75(\pi r^2) \\
 &= (.75)(3.14)(8)^2 \\
 &= 150.72 \text{ cm}^2
 \end{aligned}$$

$$\begin{aligned}
 A_2 &= lw \\
 &= (14)(20) \\
 &= 280 \text{ cm}^2 \\
 A_{\text{total}} &= 39.25 + 280 \\
 &= 319.25 \text{ cm}^2
 \end{aligned}$$

2. a.

$$A_{Total} = A_1 - A_2$$

$$\begin{aligned} A_1 &= l \cdot w \\ &= (25)(11) \\ &= 275 \end{aligned}$$

$$\begin{aligned} A_2 &= \pi r^2 \\ &= (3.14)(5.5)^2 \\ &= 94.985 \end{aligned}$$

$$\begin{aligned} A_{Total} &= A_1 - A_2 \\ &= 275 - 94.985 \\ &\approx 180 \text{ cm}^2 \end{aligned}$$

b.

$$A_{Total} = A_1 - A_2$$

$$\begin{aligned} A_1 &= \pi r^2 \\ &= (3.14)(9.5)^2 \\ &= 283.385 \end{aligned}$$

$$\begin{aligned} A_2 &= \pi r^2 \\ &= (3.14)(8)^2 \\ &= 200.96 \end{aligned}$$

$$\begin{aligned} A_{Total} &= A_1 - A_2 \\ &= 283.385 - 200.96 \\ &= 82.43 \text{ cm}^2 \end{aligned}$$

3. a.

$$\begin{aligned} S.A. &= 2\pi r^2 + 2\pi rh \\ &= (2)(3.14)(4)^2 + (2)(3.14)(4)(7) \\ &= 100.48 + 175.84 \\ &= 276.32 \text{ cm}^2 \end{aligned}$$

b.

$$\begin{aligned} S.A. &= 2[wh + lw + lh] \\ &= 2[(5)(11) + (6)(5) + (6)(11)] \\ &= 2(55 + 30 + 66) \\ &= 2(151) \\ &= 302 \text{ cm}^2 \end{aligned}$$

c.

$$\begin{aligned} S.A. &= \pi r(s + r) \\ &= (3.14)(3)(5 + 3) \\ &= (3.14)(3)(8) \\ &= 75.36 \text{ m}^2 \end{aligned}$$

d.

$$\begin{aligned} S.A. &= 2bs + b^2 \\ &= 2(9)(11.3) + (9)^2 \\ &= 203.4 + 81 \\ &= 284.4 \text{ m}^2 \end{aligned}$$

e.

$$\begin{aligned} S.A. &= 4\pi r^2 \\ &= (4)(3.14)(6.4)^2 \\ &\approx 514.46 \text{ cm}^2 \end{aligned}$$

f.

$$\begin{aligned}
 S.A. &= 2\left(\frac{bh}{2}\right) + 2ls + lb \\
 &= 2\left(\frac{(8)(9)}{2}\right) + 2(12)(9.85) + (12)(8) \\
 &= 72 + 236.4 + 96 \\
 &= 404.4 \text{ } m^2
 \end{aligned}$$

Lesson 17

1. a.

$$\begin{aligned}
 V &= \pi r^2 h \\
 &= (3.14)(4)^2(7) \\
 &= 351.68 \text{ } cm^3
 \end{aligned}$$

b.

$$\begin{aligned}
 V &= lwh \\
 &= (6)(5)(11) \\
 &= 330 \text{ } cm^3
 \end{aligned}$$

c.

$$\begin{aligned}
 V &= \frac{\pi r^2 h}{3} \\
 &= \frac{(3.14)(3)^2(4)}{3} \\
 &= 37.68 \text{ } m^3
 \end{aligned}$$

d.

$$\begin{aligned}
 V &= \frac{b^2 h}{3} \\
 &= \frac{(9)^2(10.37)}{3} \\
 &= 278.1 \text{ } m^3
 \end{aligned}$$

e.

$$\begin{aligned}
 V &= \frac{4\pi r^3}{3} \\
 &= \frac{(4)(3.14)(6.4)^3}{3} \\
 &\approx 1097.5 \text{ } cm^3
 \end{aligned}$$

f.

$$\begin{aligned}
 V &= \frac{bhl}{2} \\
 &= \frac{(8)(9)(12)}{2} \\
 &= 432 \text{ } m^3
 \end{aligned}$$

Lesson 18

1. $\angle 1 = 65^\circ$; supplementary to 115°
 $\angle 2 = 65^\circ$; vertically opposite $\angle 1$
 $\angle 3 = 115^\circ$; supplementary to $\angle 2$ or vertically opposite to 115°

2. $\angle AEC = 90^\circ$; right angle given
 $\angle AED = 52^\circ$; vertically opposite $\angle FEB$
 $\angle DEB = 128^\circ$; supplementary to $\angle FEB$
 $\angle CEF = 38^\circ$; complementary to $\angle FEB$

3. $\angle 1 = 123^\circ$; angles at a point equal 360°

4. $\angle 2 = 153^\circ$; angles on a line equal 180°

5. $\angle 1 = 119^\circ$; consecutive interior angles are supplementary
 $\angle 2 = 119^\circ$; vertically opposite $\angle 1$
 $\angle 3 = 61^\circ$; supplementary to $\angle 2$ or corresponding to 61°

6. $\angle 1 = 102^\circ$; corresponding to 102°
 $\angle 2 = 49^\circ$; corresponding to 49°
 $\angle 3 = 29^\circ$; angles on a line equal 180°
 $\angle 4 = 102^\circ$; angles on a line equal 180° or alternate interior angle with 102°

7. $\angle 1 = 72^\circ$; corresponding to 72°
 $\angle 2 = 108^\circ$; supplementary to $\angle 1$ or consecutive interior angles are supplementary
 $\angle 3 = 41^\circ$; corresponding to 41°

8. $\angle 4 = 50^\circ$; alternate interior angle with 50°
 $\angle 5 = 46^\circ$; alternate interior angle with 46°
 $\angle 6 = 84^\circ$; angles on a line equal 180° or interior \angle 's of triangle equals 180°

Lesson 19

1. $\angle 1 = 73^\circ$; supplementary to 107°
 $\angle 2 = 73^\circ$; base \angle 's of Isos Δ are equal
 $\angle 3 = 34^\circ$; interior \angle 's of triangle equals 180°

2. $\angle 4 = 141^\circ$; supplementary to $\angle 5$
 $\angle 5 = 39^\circ$; interior \angle 's of triangle equals 180°
 $\angle 6 = 129^\circ$; supplementary to 51°

3. $\angle 1 = 80^\circ$; interior \angle 's of triangle equals 180°
 $\angle 2 = 100^\circ$; supplementary to $\angle 1$
 $\angle 3 = 62^\circ$; corresponding to 62°

4. $\angle 6 = 60^\circ$; \angle 's of equilateral Δ are equal (180°)
 $\angle 7 = 120^\circ$; supplementary to $\angle 6$

5. BOAT is a rectangle
 $AB = TO$; opposites sides of rectangle are equal lengths
 $AB = 6 \text{ cm}$, TO is 6 cm .
 $BS = 7.62 \text{ cm}$ BS is half of BT because AO bisects BT . Note: Pythagorean theorem needed to find length BT
 ΔBSO is an Isos Δ because SO and SB are equal lengths.
 ΔOBA is a right angle Δ .

6. SHIP is a Trapezoid
 $\angle 1 = 56^\circ$; complementary to 34°
 $\angle 2 = 56^\circ$; base \angle 's of Isos Δ are equal
 $\angle 3 = 68^\circ$; interior \angle 's of triangle equals 180°

7. FLAG is a Rhombus
 $FG = 10 \text{ cm}$; $FG = FL$
 $NL = 8 \text{ cm}$; Pythagorean Theorem
 $FA = 12 \text{ cm}$; FA bisected by GL

8. LOAD is a Rhombus
 $\triangle DOL$ is an Isos \triangle because LO and LD are equal lengths
 $\angle AWD = 90^\circ$; diagonals bisect at right angles
 $\triangle DWL$ is a right angle \triangle . because $\angle DWL$ is 90°
 $\angle LDA = 100^\circ$; consecutive angles of rhombus equal 180°
 $\angle DLA = 40^\circ$; base \angle 's of Isos \triangle are equal

Lesson 20

1.

$$\triangle PQS = \frac{64}{2} = 32 \text{ cm}^2$$

2.

$$DH = \frac{DF}{2} = \frac{9}{2} = 4.5 \text{ cm}$$

3.

$$OB = 2OD = 2(12) = 24 \text{ cm}$$

4.

$$A = \frac{bh}{2} = \frac{(10)(7)}{2} = 35 \text{ cm}^2$$

5.

$$A = \frac{bh}{2} = \frac{(5.5)(5.5)}{2} = \frac{30.25}{2} = 15.125 \text{ m}^2$$

6.

$$A = \frac{bh}{2} = \frac{(30)(44)}{2} = \frac{1320}{2} = 660 \text{ cm}^2$$